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Abstract Any theory of linguistic cognition is a theory of linguistic compu-

tation and thus must posit a generative function. The common assumption

is that this function is n-ary. I argue that this assumption cannot be main-

tained if the theories of computability and computational complexity are

accepted: an n-ary form of the function Merge is either incomputable or in-

tractable. By contrast, a form of binary Merge is computable, tractable, and

computationally optimal. From the assumption of binarity, predictions are

generated as to the universality of binary branching structures and ergo the

impossibility of flat-structures (and non-configurational languages).

1 Introductory Remarks

Cognition is demonstrably computational: simply and informally stated, pro-
cedures are run to determine the outputs of functions given inputs. In the
domain of linguistic cognition, procedures are run to generate syntactic struc-
tures, inter alia, and thus an explicit theory of this generative process is a
central desideratum of linguistic inquiry.

To define the function generative of syntactic structures as binary is gen-
erally believed to be stipulative (see, e.g., Yang 1999); that it is simpler to
assume the function intrinsically n-ary but restricted to binarity in the ma-
jority of its applications by extrinsic factors such as computational resources
(e.g., minimal search), conditions at the interfaces with extralinguistic sys-
tems (e.g., predicate-argument structure at the conceptual-intentional inter-
face, linearization at the sensory-motor interface), the imperative for “unam-
biguous paths” (Kayne 1981) in phrase structure, etc. (see Chomsky 2008).
In this squib I shall challenge this assumption, arguing that an n-ary func-
tion is at worst intractable—or worse still, even incomputable—and at best
intolerably inefficient. It will follow from the conditions n-arity fails to satisfy
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that some form of binarity is computable, tractable, and optimally1 efficient.
My theory of binarity—only briefly adumbrated here (see Watumull 2010,
2012b for its elaboration)—denies the possibility of so-called flat syntactic
structures, rejects traditional analyses (some already moribund) of so-called
non-configurational languages, and predicts the universality of so-called bi-
nary branching structures; I can thus contribute to resurgent and successful
research on language universals (see, e.g., Biberauer, Holmberg, and Roberts
2011, Roberts 2011). The particular formulation of the generative function I
investigate is called Merge; this function is a particularly serviceable lab rat,
having been explicitly formulated and extensively discussed (see, e.g., Watu-
mull 2010 and the numerous references therein). N.B., mine is a theory of

binarity, formulated so as to be generalizable from Merge and the principles
of the Minimalist Program (Chomsky 1995, et seq.) to any generative process
posited in any research program (see sections 5 and 6); and such a process
must be posited in some form(s) in any theory of the human competence to
compute syntactic structures.

Finally, an apology and an apologia from the armchair: I shall not dilate
on data; my intent rather is to prepare the ground, as it were, for empirical
inquiry.2 I contend that such a priori formalization can be constructive for
approaching data by defining those properties that must obtain of the theory
by virtual logical necessity3 and by exposing inherently (technically) impossi-

1 The concept of optimality assumed here is that implied by the minimax theorem (von
Neumann 1928) as formulated in Watumull 2010: informally stated, minimize input repre-
sentations/resources, maximize output expressions.

2 I am advocating an explicitly theory-laden approach to data. Any approach of any interest is
(implicitly) theory-laden: a datum is informative only insofar as it relates to (corroborates,
confutes, etc.) prior assumptions (as demonstrated formally in Shannon 1948). This theory
of information is a philosophy of science: “If a term ‘F ’ is to be a meaningful observation
term, then its predication in ‘Fa’ must have some material consequences [...]. The sentence
‘Fa’ will clearly have this property if it is asserted in a context where general sentences such
as ‘pxqpFxĄGxq’, ‘pxqppFx&HxqĄ „ Kxq’, [etc., are] assumed. ‘Fa’ will then imply ‘Ga’,
be incompatible with ‘pHa&Kaq’, [etc.]. But if ‘F ’ figures in no such background beliefs
or assumptions [...], then ‘Fa’ will be entirely without consequence or significance [...]. It
will have no bridges to link its assertion or denial with the assertion or denial of any other
sentence. [I]ts assertion will be computationally inert. It will be without computational
significance for the very cognitive system that asserts it” (Churchland 1988: 183) (emphases
original). For syntactic theory, material consequences follow from the positing of a generative
procedure if, inter alia, the principles of computability and computational complexity are
assumed.

3 Given the evidence for linguistic computation, I argue it is logically necessary to assume
the language faculty to be a form of Turing machine with addressable read/write memory
(see Watumull 2012a). The general reasoning is as follows (Gallistel and King 2009: 125,
105, i): If “the brain is an organ of computation[,] then to understand the brain one must
understand computation [and how it may be physically implemented],” which necessitates
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ble or implausible theories. “It is quite incorrect [...] to regard formalization
as an activity that occupies the researcher after he has developed an effective
theory. On the contrary, formalization can play a very productive role in the
process of discovery itself [...]. We will find that certain familiar conceptions

of linguistic structure, when formalized, literally cannot provide [a] grammar,

and that others can do so, if at all, only at an intolerably great cost” (Chomsky
1955: 58) (emphasis added). (Indeed, my argument here is that n-ary Merge
is either incomputable (i.e., it “literally cannot provide [a] grammar”) or in-
tractable (i.e., if it can, it can “only at an intolerably great cost”).) With these
boundary conditions established, the domain of admissible—and potentially
productive—theories is drawn into relief. Substantively, and most importantly,
the formalization thus restricts the space of possible linguistic structures.

2 Merge

The type of n-ary function proposed in the literature (see Chomsky 1995, et
seq.) is a set-formation function that accepts n arguments (syntactic objects
SOs, simple or complex) to generate as a value the set (a new complex SO)
containing the n elements, as in (1). Binary Merge thus functions as in (2).4

(1) fn-aryMERGE(δi, ..., δn) = {δi, ..., δn}

(2) f2-aryMERGE(α, β) = {α, β}

My argument is that for a subset of cases, (2) is the only form of Merge
technically possible and plausible—computable and tractable, respectively—
and for all cases the only form worth wanting, assuming the thesis that lin-
guistic computation is optimal; a reasonably defined notion of optimality is

formalization; “[Turing] created a formalization that defined a class of machines,” with func-

tional components and procedures so elementary as to be multiply physically realized. And
“By mathematically specifying the nature of these machines, and demonstrating their far-
reaching capabilities, [Turing] laid a rigorous foundation for our understanding of what it
means to say something is computable.” A formalization can thus define conditions of ade-
quacy that any theory in a particular domain of inquiry must satisfy to be true. Thus if it
is demonstrated by research on higher levels of analysis that “brains are powerful organs of
computation,” and that a formally definable “[addressable read/write] memory mechanism
is indispensable in powerful computing devices,” then it is incumbent upon researchers at
lower levels of analysis to demonstrate how such a mechanism is biologically implemented
(see Marr 1982 on levels of analysis).

4 The classical rules of Generative Grammar are compressible into binary Merge: phrase
structure rules into external Merge EM pEMpX,Y |XRY ^Y RXq “ tX, Y uq; transformation
(movement) rules into internal Merge IM pIMpX,Y q|XPY _Y PXq “ tX,Y uq.
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consistent with metaphysical and methodological parsimony (and thus a stim-
ulant to research if nothing else).5

3 Computability

Merge of arity n is two-ways incomputable.

3.1 Nonfinite Procedure

Implemented in a Turing architecture (Turing 1936),6 the input to the Merge
procedure, implementing the set-formation function, is a potentially infinite
tape (the analogue to a set of SOs to be merged) divided into finite discrete
symbols (each symbol representing an SO). The arity of the function is defined
by the number of SOs necessary to saturate it: 2 for a binary function, n for
an n-ary function. Once the function is saturated, the procedure halts and
generates an output (a complex SO); this process can be iterated indefinitely
given that the tape can be infinite.

For n-ary Merge, the set of possible values of n—equivalent to the set of
possible procedures for computing an output—is infinite and the input k can
be infinite (e.g., were SOs to be continually selected and merged from the
lexicon and/or parallel derivations). If n “ k, k = 8, then n-ary Merge can-
not be finitely defined—assuming as I am, in this instance, that the function
is not decomposed into a sequence of finitely defined operations—and thus
the procedure cannot halt to produce an output. (Hereinafter, in discussing
computability, n-ary Merge refers to a function of arity n, n = input k, k =
8.) This is the problem. “Recursive functions [computable functions] have
the important property that, for each given set of values of the arguments,
the value of the function can be computed by a finite procedure” (Gödel 1934:
348). The finiteness of the procedure (n.b., not the input tape7) is not only
an important property of computability, it is the sine qua non in that any
procedure lacking it is ipso facto incomputable: “There must be exact instruc-
tions, (i.e., a program), finite in length, for the procedure [to be computable]”

5 See Moro 2008 and Culicover and Jackendoff 2005 for discussions of the numerous notions—
methodological and metaphysical—of linguistic “optimality,” “simplicity,” etc. in the diverse
research programs of Generative Grammar.

6 See Watumull 2012a for a formulation of a linguistic Turing machine.
7 “The entire point of computability theory is to be able to talk about inputs of unbounded

length. E.g. once you know a multiplication algorithm, you can multiply n-digit numbers
for arbitrary n” (Scott Aaronson, personal communication) (emphasis added). The problem
for n-ary Merge is that it cannot be known (i.e., defined) for unbounded input if—as I
am assuming in this instance—the length of the definition of Merge is equal to the length

of its input. For multiplication, the function is defined as binary a priori, but even it is
incomputable on incomputable numbers (see footnote 8).
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(Enderton 1977: 528). The arity of Merge is an instruction as to the number
of arguments to merge. These instructions can be specified for n-ary Merge
only once the nth element of the input is counted, and thus if the input k is
infinite, and n = k, then the procedure is uninstructed and cannot compute.8

Natural language is demonstrably a system of discrete (digital/denumerable)
infinity, so it is a contradiction in terms for it to be incomputable if fed infi-
nite input. By contrast, binary Merge is computable by definition in that it
generates an output if and only if fed two SOs (the minimal number of input
representations); this finite process can be iterated indefinitely—i.e., over any
k—to generate an infinity of discretely structured expressions (the maximal
number of maximally information-bearing output representations as defined in
Watumull 2012b).

N.B., binary Merge is strongly generative: it generates hierarchically struc-
tured expressions—representing syntactic information—mappable via seman-
tic and phonological-morphological information to the interfaces with conceptual-
intentional and sensory-motor systems, respectively. These strongly gener-
ated structures correspond to weakly generated strings, which are for the most
part—if not wholly—immaterial to syntactic and semantic cognition; n-ary
Merge can but need not be strongly generative, and thus can but need not
generate expressions material to syntactic and semantic cognition.

3.2 Undecidable Arity

Given some input, unbounded or bounded, if the arity of the function is the
unspecified n, it cannot ever be decided when, where, or even if the procedure
halts (or starts); in other words, given some input k of SOs, if the arity of
Merge is undefined, it cannot be decided which if any members of k become
members of the SO under construction (which SOs enter the derivation). The
arity of n-ary Merge thus needs to be stipulated merger by merger; its formal
definition—and, equivalently, its physical representation in the system—needs
to be erased and recoded merger by merger, thus complexifying the system
grievously. The undecidable problem does not obtain of a function with an

8 For infinite input, it is as if n-ary Merge is processing an incomputable number: “A com-
putable number [is] one for which there is a Turing machine which, given n on its initial tape,
terminates with the nth digit of that number [encoded on its tape]” (Minksy 1967: 159).
Equivalently, incomputable numbers are numbers that cannot be physically represented. It
follows that the majority of the real numbers are incomputable and that the arithmetical
functions are computable only for computable numbers. Analogous to an incomputable
real number with an infinite decimal expansion is the infinite input k to n-ary Merge, n

= k: such a number/input is incomputable, thus “there is no machine that can generate a
representation (encoding) of [it]” (Gallistel and King 2009: 52).
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arity prespecified for all possible mergers (e.g., binary Merge).
The procedure implementing n-ary Merge is thus not guaranteed to halt,

generating an output, and “one cannot make productive use of a function unless
one can determine the output for any permissible input” (Gallistel and King
2009: 87).9

3.3 Straw Man

One could concede my argument for the incomputability of n-ary Merge, but
dismiss it as otiose, the slaying of a straw man: the incomputability of n-ary
Merge emerges only in the hypothetical limit—with infinite input k, n “ k. In
the “real world,” however, k will always be finite so that even if n is unspecified,
n-ary Merge will eventually halt as computable.

To this dismissal I should reply that incomputability, in its abstractness, is
a really “real” problem if the object of linguistic inquiry is, or can be regarded
as, “the thing in itself,” i.e., a computational—thus mathematical—system ab-
stracted away from spatiotemporal contingencies, as a Turing machine is with
its memory space and operating time unlimited so as to reveal the functional

components and procedures which exhaust its definition as a Turing machine
(n.b., any computational system is a form of Turing machine); in other words,
to be a Turing machine is nothing more and nothing less than to be a mathe-
matical object of a particular type.10 Consider the “superstition” in attaching
“Importance [...] to the fact that modern digital computers are electrical, and
that the nervous system also is electrical. Since Babbage’s machine was not
electrical, and since all digital computers are in a sense equivalent, we see
that this use of electricity cannot be of theoretical importance [...]. If we wish
to find [...] similarities [between digital computers and the nervous system],
we should look rather for mathematical analogies of function” (Turing 1950:
439) (emphasis added). Consistent with this reasoning, the object of linguis-
tic inquiry can be defined as a functional (mathematical) competence: the

9 Evolutionarily, an incomputable system cannot be selected for—as it confers no advantage—
or against—as the majority of incomputable functions are probably neither adaptive nor
maladaptive, and thus undetectable by selection (see Minksy 1985). (See Rosenberg 2011 for
an argument that nature only selects against, which would imply that a neutral incomputable
function could evolve. However, the fixation/retention of such a function in the gene pool
could be difficult to explain.) It is possible in principle for an incomputable system to evolve
as a spandrel, but this would be selection of the system, not selection for/against it: the
incomputable system would constitute a byproduct of some adaptive trait (see Fodor and
Piattelli-Palmarini 2010 for an interesting but fallacious analysis of the selection-of/selection-
for distinction.)

10 A Turing machine is a mathematical abstraction: the general and necessary and sufficient
conditions an object must satisfy for it to be defined as a (type of) Turing machine are
purely functional (see Carnap 1955 on such intensional definitions).
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“underlying system of rules” (Chomsky 1965: 4) in the mind that “represents
the information concerning sentence structure that is available, in principle,
to one who has acquired the language” (Chomsky 1963: 326-327). This in-
formation is represented as an “idealization [...] leaving out any limitations
[...] of memory, time, and access” (Chomsky 1965: 4, 10). Idealization of
the linguistic system reveals the components and procedures which exhaust
its definition as a subtype of Turing machine; these components and proce-
dures are purely functional—purely and ultimately mathematical. It is thus
legitimate to define the linguistic system as nothing more and nothing less
than a mathematical object of a particular type.11 Such idealization is part
and parcel of the methodology and the metaphysics of normal science, which
proceeds by the “making of abstract mathematical models of the to universe
to which at least the physicists give a higher degree of reality than they accord
the ordinary world of sensation” (Weinberg 1976: 28) (emphasis added).12

In the “world of sensation,” call it “the computable world,” things in them-
selves, often abstract, are confounded by arbitrary constraints, often physical.
For computational systems, confounding the abstract with the physical can
conflate the obvious yet only lip serviced distinction between software and
hardware; thus this important distinction remains unassimilated, thus pre-
venting recognition of the fact that “As our knowledge increases, the abstract
mathematical world becomes farther removed from the world of sensation”
(Weinberg 1976: 28). For instance:

You know that if your computer beats you at chess, it is re-
ally the program that has beaten you, not the silicon atoms
or the computer as such. The abstract program is instanti-
ated physically as a high-level behaviour of vast numbers of
atoms, but the explanation of why it has beaten you cannot
be expressed without also referring to the program in its own
right. That program has also been instantiated, unchanged,
in a long chain of different physical substrates, including neu-
rons in the brains of the programmers and radio waves when
you downloaded the program via wireless networking, and fi-
nally as states of long- and short-term memory banks in your
computer. The specifics of that chain of instantiations may
be relevant to explaining how the program reached you, but
it is irrelevant to why it beat you: there, the content of the
knowledge (in it, and in you) is the whole story. That story
is an explanation that refers ineluctably to abstractions; and

11 It goes without saying that this is but one (objective) way to explain language.
12 This can be construed as a restatement of the Platonic theory of forms.

317



Watumull

therefore those abstractions exist, and really do affect physical
objects in the way required by the explanation. (Deutsch 2011:
114-115) (emphases original)13

Consistent with this reasoning, it is not unreasonable to “give a higher degree
of reality” to an “abstract mathematical model” of linguistic computation—to
which my arguments on (in)computability apply—than to the “ordinary world
of sensation,” governed by computational complexity theory, with its concerns
for (in)tractability.

4 Tractability

In mathematical abstraction, n-ary Merge can be incomputable. In concrete
(physical) computation, n-ary Merge, n > 2, can be intractable because the
spatiotemporal resources necessary for a procedure implementing n-arity to
generate an output increase exponentially as the number of arguments to merge
increases linearly.14 And obviously space and time are not limitless; n.b., the
amount of energy required to recode the function—erase and restipulate the
arity n as it varies—merger by merger is so limited by physical law as probably
to trivialize the frequency and extent to which n can vary (see Rio et al. 2011
on erasure as the costliest of computational operations). Thus for some (as
yet undefined) “large” value of n—and a fortiori infinite n—n-ary Merge is
physically infeasible if not impossible.15

13 This is to restate the Aristotelean distinction of matter and form.
14 By way of analogy (see Gallistel and King 2009: 7), suppose “we want to construct symbols

to represent different durations [...]. The symbols are to be constructed by placing marbles
into rows of hemispherical holes on a board. [E]ach row [could] be the symbol for a different
duration and increment the number of marbles in a row by one for each additional second
of duration symbolized by that row. We call this the analog principle [...].” The analog
principle describes n-ary Merge: if a row corresponds to the number of argument positions
in the function and the marbles correspond to arguments, “We are immediately struck by
the discouraging size of the bag of marbles we will need and the length of the board. The
problem with this design is that the demand on these physical resources grows in proportion
to the number of [symbols] that we want to distinguish.”

15 The size of a merger is multiply definable, and on virtually any definition, the size of n-
ary Merge (n > 2) exceeds that of binary Merge; and inefficiency increases exponentially
with increasing n. An analogy is that of the definition of an algorithm for determining a
matching in graph theory: “The relative cost [...] of the various applications of a particular
algorithm is a fairly clear notion, at least as a natural phenomenon [...]. The domain of
applicability for an algorithm often suggests for itself possible measures of size for individual
problems—for maximum matching, for example, the number of edges or the number of
vertices in the graph [...]. There is an obvious finite algorithm, but that algorithm increases
in difficulty exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only algebraically with the size
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In connection with this absolute limit on physical computation is the ex-
igency for thermodynamic stability. Because n-ary Merge does not halt to
generate an output until the nth argument to be merged is retrieved (counted)
from the lexicon and/or a parallel derivation, each argument < n, as it is re-
trieved, needs (in some connectionist models) to circulate in a reverberating
memory loop, generating heat, waiting until n is reached. The problem is that
“A reverberating loop is a highly volatile mechanism; in the absence of the en-
ergy required to maintain continuous signal transmission, the signal dissipates
in a matter of milliseconds” (Gallistel 2003: 206). Thus for a large number n

of arguments to be merged, requiring large amounts of energy, n-ary Merge is
condemned by the laws of thermodynamics. Binary Merge, with the smallest
number of arguments to be computed, reduces the load on reverberating loops,
thus reducing energy and heat to the minimum.

However, Gallistel argues that reverberating loops are (probably) not cen-
tral to neural computation (precisely because of their volatility).16 If he is
correct, and I am convinced he is, Merge of any arity is predicted to operate
with a stable read/write memory.

But even replacing reverberating loops with the non-volatile read/write
memory—the tape(s)—of a Turing machine—equivalently, the stack(s) of a
pushdown automaton—does not render n-ary Merge computationally tractable.
As the input tape bearing SOs is fed into the machine in discrete moves, bi-
nary Merge reads an SO off the tape and writes (pushes) it to the stack, thus
forming a structured set with the (complex) SO formed on the preceding move;
the stack thus represents the SO under construction (the derivation). Oper-
ating sequentially, immediately offloading (merging) to the stack each SO it
processes, binary Merge does not count, thus the number of input SOs is im-
material to its computation.17 For n-ary Merge, however, the length of the
tape is material, as the input SOs must be stored—effectively counted—in the
finite state memory until the nth input is read and Merge can write. The state
memory is by definition insufficient to compute a lengthy input, let alone an

of the graph [...]. For practical purposes the difference between algebraic and exponential
order is often more crucial than the difference between finite and non-finite” (Edmonds
1965: 450-451). Equivalently, a procedure is efficient if it is upper-bounded by a polynomial
function of n and inefficient if lower-bounded by an exponential function of n. Binary Merge
is (trivially) polynomial; n-ary Merge is exponential. A simpler measure is in terms of
Kolmogorov complexity: the length of the shortest description y such that y represents x, x
some program(=function) for the (syntactic) computation; by this measure, the complexity
the n-ary Merge program/function exceeds that of the binary Merge program/function by
definition.

16 Indeed, connectionism generally is probably false (see Watumull 2012b).
17 A formulation of binary Merge in Polish notation could precisify the “immediacy” of its

execution (C.R. Gallistel, personal communication).
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infinite one (see Chomsky 1955). Thus again is n-ary Merge intractable.
Binary Merge is tractable if any function is: its spatiotemporal resources

are held constant at the absolute minimum necessary and sufficient for a func-
tion to be nontrivially generative.18 In this natural sense of minimizing input
to maximize output—expressions can be added to expressions indefinitely—
binary Merge is the optimal generative function. Unlike n-ary Merge, binary
Merge halts as soon as a combinatorial operation can halt.19 Thus even a
tractable n-ary Merge—a function with not “too large” an n, n > 2—is sub-
optimal vis-à-vis binary Merge.

The (potential) intractability of n-ary Merge is related to its (potential)
non-compactness. Informally stated, the procedure for some function is com-
pact if the information necessary to encode it is some significant number of
orders of magnitude less than the information the procedure can generate. Bi-
nary Merge is compact because it codes for two and only two arguments and
yet can be iterated to merge n SOs; this is the power of combinatorial syntax.20

Thus the (irreducibly21) finite procedure implementing the binary function can
generate an infinite array of information. But n-ary Merge can code for any
number of arguments so that in principle the information necessary to en-
code it can be equal to—and frequently greater than—the information it can
generate: i.e., specifying the function requires as many if not more bits than
specifying the problem (the set of SOs to be merged); only if n is constrained
can the function be compact, and binarity is maximally compact—the form
worth wanting. The distinction in compactness between binary Merge and n-
ary Merge can be stated (here informally) in terms of the length of the shortest

18 A unary Merge would be trivially generative in that it would not be combinato-
rial/compositional.

19 Merging/Halting as soon as possible conforms to the logic of the Earliness Principle (Pesetsky
1989). And by halting as early as possible, binary Merge implements a minimal search
procedure general to efficient computational systems: “The symbols that carry the two values
that serve as the arguments of a two-argument function cannot occupy physically adjacent
locations, generally speaking. Thus, the functional architecture of any powerful computing
device, including the brain, must make provision for bringing symbols from their different
locations to the machinery that effects the primitive two-argument function” (Gallistel and
King 2009: x). If for some system two arguments are necessary and sufficient to generate an
output, then ipso facto minimal search is not implemented by a function that must search
for n arguments, n > 2.

20 Binary Merge can effectively and efficiently simulate n-ary Merge. “Computations are the
compositions of functions. A truth about functions of far-reaching significance for our un-
derstanding of the functional architecture of the brain is that functions of arbitrarily many
arguments [e.g., n-ary Merge—Watumull] may be realized by the composition of functions
that have only two-arguments [e.g., binary Merge—Watumull]” (Gallistel and King 2009:
x).

21 Generally, a binary function cannot be meaningfully decomposed into a unary function. For
Merge, binarity is irreducible, as unarity is noncombinatorial/noncompositional.
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description y such that y represents x, x some program(=function); this mea-
sure of Kolmogorov complexity defines the binary Merge program/function as
less complex than the n-ary Merge program/function (cf., (1) and (2)).

In sum, the assumption that Merge is restricted to binarity from its ini-
tial state of n-arity is fallacious: n-ary Merge is incomputable in a discrete
infinity, undecidable for its unspecified arity, inexorably intractable with the
spatiotemporal resources of the procedure implementing it increasing expo-
nentially in the number of bits required to encode the input compactly, and
inefficient because binary Merge (polynomially bounded by design) is neces-
sary and sufficient for strong generativity.

It stands to reason that evolution would converge on the simplest stable
function—binary—rather than jump to one that is complex and volatile: “any
evolutionary process must first consider relatively simple systems, and thus
discover the same, isolated, islands of efficiency [in the] universe of computa-
tion” (Minsky 1985: 122).22

5 Optimality

Binary Merge is computable, tractable, and optimal in minimizing abstract
representations and spatiotemporal resources in the process of maximizing
the strong generation of syntactic structures. But this holds only of some

form(s) of binary Merge.23 One form of which it is not true is union Merge
(or “Unification”), a function that generates the union of its arguments (see
Jackendoff 2011, Zwart 2011, Fortuny 2008, Langendoen 2003).24

(3) funionMERGE(γ, {α, β}) = {γ, α, β}

The elementary form of binary Merge postulated in (2) generates as an
output the structure in (4) if fed the input of (3).

(4) f2-aryMERGE(γ, {α, β}) = {γ, {α, β}}

22 It has been demonstrated mathematically (see Turing 1952 on morphogenesis, Mandelbrot
1982 on fractals) and simulated computationally (see Minsky 1985 on Turing machines,
Wolfram 2002 on cellular automata) that evolution does tend converge on simple procedures
generative of infinite complexity.

23 I defer to future work a proof of the theorem that (binary) “Parallel Merge” and its equiv-
alents (see Ciko 2011) are surpassingly suboptimal and indeed that any multidominance
model cannot be optimal vis-à-vis my formulation of minimax Merge. Notwithstanding
protestations to the contrary, models of “intersecting sets” (see Seely 2011) reduce to mul-
tidominance models.

24 Union operations—effectively equivalent to union Merge—in the node contractions of Tree-
Adjoining Grammars (see Sarkar and Joshi 1996) and reduced phrase markers (see Goodall
1987) are equally problematic, but a critique is beyond the scope of this squib.
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In efficient computation, neither SO is modified under merger; this can
be stated as the No-Tampering Condition NTC (see Chomsky 2005). But
union Merge, by design and admission (see Jackendoff 2011), violates NTC:
it erases the brackets—by an implicit associativity operation—of the com-
plex SO(s).25 In (3), for instance, the complex SO {α, β} is dismantled; the
information representing the structural relation of those arguments to the ex-
clusion of γ is deleted. And because in its tampering it is associative, union
Merge flattens hierarchy—dissolving the fundamental syntactic property of
structure-dependence (see Berwick et al. 2011)—which must then be recon-
structed somehow to meet empirical demands, perhaps by stipulating implicit
hierarchy in an inexplicably recorded or inferred order of mergers (see Zwart
2011, Fortuny 2008, Langendoen 2003).26 Indeed, union Merge (Unification)
must resort to a complex form of binary Merge, as Unifiers concede:

Unification alone cannot create constituent structure: it only
creates a Boolean combination of preexisting features and struc-
tures. In order to build structure, one needs a skeletal con-
stituent structure that can be unified with two or more items.
[One such schema] is a set {x, y} with variable elements x and
y as parts. This can be unified with specific elements A and B
to form the set {A, B}—in effect, the output of [binary] Merge.
(Jackendoff 2011: 602-603)27

Not only is Unification unwieldy and bursting with redundancies, the only

25 Extensive erasure operations can render a system intractable: “Landauer’s principle states
that the erasure of data stored in a system has an inherent work cost and therefore dissipates
heat” (Rio et al. 2011: 61). For this reason, erasure is probably the costliest operation in
computation.

26 Recovering structure erased in the computation of union Merge could be incomputable
(“nonrecursive”) for the reason recovering deep structure deleted in the phrase structure
grammar of Chomsky 1965 is (perhaps) incomputable: “If what a machine must do to
recognize whether or not a given sentence (surface string) is in the language generated by
some transformational grammar is to recover its deep structure, and if deep structures can
be arbitrarily large compared to the surface strings derived from them, then the recognition
procedures for such languages are not even recursive” (Berwick 1984: 190). Formally, “Let
G be a transformational grammar. Let fG be the cycling function of G, where fGx is 0 if
x is not in LpGq [the language generated by G], and otherwise is the least number s such
that G assigns x a deep structure with s subsentences. If fG is bounded by an elementary
(primitive) recursive function, then LpGq is elementary (primitive) recursive [...]. If the
cycling function is not bounded, then LpGq is not even recursive” (see Peters and Ritchie
1973). With union Merge, associativity deletes structure which must be recovered. For an
unbounded SO, that structure is unbounded, and thus cannot be recovered.

27 An infinite number of such schemas are necessary given that the number of possible SOs to
be unified is infinite.
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procedures that can implement it are exponentially (i.e., inefficiently) bounded;
simple binary Merge, however, which is simply combinatorial/compositional
set-formation as in (4), does not modify its arguments, and thus complies with
NTC—and can be implemented by polynomially bounded procedures (Robert
C. Berwick, personal communication). It is this form of Merge—computable,
tractable, compact, efficient, strongly generative—that reflects computational
optimality (see Watumull 2010 for a formulation of Merge in these minimax

terms).

6 Concluding Remarks

If Merge is necessarily binary as in (2) and (4), it necessarily generates hierar-
chically structured 2-sets (sets containing two elements), and thus such “binary
branching” structures are predicted to be universal.28 As stated in the intro-
duction, my model “thus restricts the space of possible linguistic structures,”
and thus I concur with Gazdar, Klein, Pullum, and Sag (1985: 2) (empha-
sis original) that “The most interesting contribution a generative grammar
can make to the search for universals of language is specify formal systems
that have putative universals as consequences, as opposed to merely providing
a technical vocabulary in terms of which autonomously stipulated universals
can be expressed.”

Given the binarity prediction, a presumption of dubiousness must obtain
of non-compositional models (see Bresnan 2001) and theories that “the appro-
priate complexity for syntax is relatively flat: headed phrases that are linearly
ordered and that correspond to constituents in Conceptual Structure, but not
more” (Culicover and Jackendoff 2005: 108).29 To be explicit, on my theory,
flat structures—or structures not composed exclusively of 2-sets generally—
are predicted to be impossible at worst or, at best, gross deviations from the
virtual logical necessity of the principles established by the theories of com-
putability and computational complexity. I should thus expand my prediction
to deny (or assume as highly improbable) the existence of non-configurational
languages.30 If a language were as flat as Simpler Syntax (Culicover and Jack-

28 Technically, Merge only generates 2-sets, not trees: only the former are psychologically real ;
the latter mere notations that have now grown to mislead researchers into forests of fallacies
(see the multidominance literature surveyed in Citko 2011). Thus technically my theory
predicts the universality of structures of 2-sets—i.e., {γn, ..., {γ1, {α, β}}...}—representable
(misleadingly) by binary branching trees.

29 The presumption of dubiousness extends to Categorial Grammars, which allow for flat struc-
tures (see Moortgat 1989, Bar-Hillel et al. 1964).

30 (i) is the hypothesized base rule of Hale 1981 and Chomsky 1981 in which W * is a sequence
of zero or more maximal projections; on my theory, such a rule—and any updated version—
cannot be a rule of natural language.
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endoff 2005) posits or, a fortiori, “had no phrase structure at all,” but merely
“units composed only of words linked by semantics and linear precedence rules”
(Everett 2010: 7), then (i) countless complex associativity operations would
need to be stipulated—and conceptually motivated—to erase the hierarchical
structure binary Merge automatically generates and (ii) the effects of hier-
archy (structure-dependence) would need to be recovered; these conditions
are probably unsatisfiable because (i) could be intractable and (ii) could be
incomputable (see footnote 26).

Thus I am arguing that the purported evidence for non-binary-branching
structures needs to be reanalyzed consistent with my theory. This is not
unreasonable: to my knowledge, no syntactic structure necessitates an analysis
in terms of non-binary Merge, which perhaps seems simpler than binary Merge
in some instances, although really it is not.31 Thus, contrary to the “Boasian
tradition,” I am arguing that language cannot be “described [...] without any
preexistent scheme of what a language must be” (Joos 1957: v) (emphasis
added). The preexistent scheme must assume a generative procedure, and
that procedure must be assumed not to be n-ary; it ought to be assumed to
be binary.

(i) XP Ñ W˚ X

Thus a conjecture such as “For Japanese, [D-structure] is a ‘flat’ structure formed by
[(i)]” (Chomsky 1981: 132)—and any updated version—must be false.

31 The empirical phenomena adduced in Jackendoff 2011 are not problematic for simple binary
Merge, but my arguments (Watumull 2012b) are too lengthy to construct here.
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