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1 Introduction

This literature review paper will investigate whether the hierarchical fundamentals
of generative syntax such as non-adjacent dependencies (NADs) and recursion can
be accounted for solely by domain-general processes.

In reviewing this, I will start by briefly describing the fundamentals of generative
grammar that pertain to NADs and recursion. The bulk of this paper will focus on
empirical approaches to investigating the possibility of domain-general learning
and processing of these structures. Firstly, I will look at evidence from artificial
language (AL) experiments on statistical learning. Subsequently, I will discuss
connectionist models such as neural networks, and how they may provide more
controlled environments for investigating this question. In tandem with this, I will
discuss a model for learning that was introduced in this paradigm: incremental
learning. Following this, I will review some of the neurocognitive research on
syntactic processing. In my conclusion, I will attempt to synthesise these findings
from different areas, and suggest some possible avenues for further research.

2 Recursion and NADs in Generative Syntax

Generative syntax arose as an answer to the inherent and infinite productivity of
language, leading to the assumption that the environment cannot provide enough
stimulus for reinforcement of observed regularities in grammar (Chomsky 1959a).
There are thus features of language that are proposed to be innate, and these have
by some been argued to be a fact of human biology and natural selection (Pinker &
Bloom 1990). Generative grammar tries to find these in theory, by providing a set of
formally defined laws derived from a finite set of examples, which should be able to
make successful predictions for the language they are applied to (Chomsky 1956:
113).

Furthermore, Chomsky argues that the productivity and hierarchical structure of
natural language goes beyond what is permissible in a finite state grammar, as the
latter disallow potentially infinite embeddings (Chomsky 1956: 115-116; Chomsky
1959b: 137-141). In later incarnations of generative syntax, this recursivity was
essentialised as the fundamental operation of Merge (Chomsky 1995), which is in
essence the faculty of language in the narrow sense (FLN), and thus where the
constraints of UG apply, while other cognitive processes and the environment
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provide the other functions and constraints upon language processing (Hauser,
Chomsky & Fitch 2002).

This universalisation of recursion begs the question: are recursive structures
typologically universal? Many polysynthetic languages show limited embedding;
they are often morphologically complex, but syntactically simple (Evans & Levinson
2009: 442-443). The most radical and controversial refutation of universal recursion
came from Everett’s (2005) study of Pirahã, an Amazonian language that does not
seem to allow any embedded or subordinated clauses, nor recursive possessive
phrases (pp. 628-631). Even in languages which allow it, such as many European
languages, recursion is not unbounded. This is most clearly illustrated by higher-
order centre-embedded structures such as relative clauses, which are rarely attested
beyond one recursive level (Christiansen & Chater 2015: 3-4). Thus, it is not an
infinite computational mechanism in practice.

There are other syntactic structures that involve non-linear relations, often de-
scribed in theory by a form of binding (Chomsky 1981, Reinhart 1976), namely
non-adjacent dependencies. From morphosyntactic phenomena such as case and
agreement, to the binding of anaphora and reflexives: all involve a hierarchical
relation that may transcend linear adjacency, and do not seem to find an explanation
outside of grammar (Tallerman, Newmeyer, Bickerton, Bouchard, Kaan & Rizzi
2009: 140-145). Thus, while both recursion and non-adjacent dependencies are not
necessarily infinite in practice, they are to different extents productive and prevalent
in natural languages, and proponents of domain-general acquisition and processing
of syntax must be able to find a reasonable mechanism by which these structures
can be acquired without any innate language-specific machinery. These approaches
will be discussed in the following sections.

3 Statistical Learning in AL Experiments

Already in the 60s, Reber (1967) proposed that an artificial language derived from a
finite state grammar, which would contain statistical distribution information about
its transitions, could be used to model language learning as a process of differentia-
tion over stimulus-inherent information. In the 90s, these AL experiments had their
breakthrough. Increased transitional probability between syllabic sequences was
found to allow infants to distinguish word boundaries (Saffran, Aslin & Newport
1996), or to differentiate between word-like units (Saffran 2001, 2002). Crucially, it
was found that the same learning mechanism could be recruited for domains beyond
the linguistic, with tonal sequences in an adult participant experiment (Saffran,
Johnson, Aslin & Newport 1999), or visual colour-shape patterns in another exper-
iment with infants (Kirkham, Slemmer & Johnson 2002). The same sensitivity to
transitional probabilities was discovered in other species, such as tamarin monkeys
(Hauser, Newport & Aslin 2001).

Nevertheless, these experiments are all uncovering statistical relations between
adjacent and linear sequences. One of the strengths of the generative framework
is its hierarchical and recursive nature which transcends linear sequences. Can
statistical learning be a mechanism of learning for these more complex structures?
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NADs have been shown to be acquired in AL experiments with both children
and adults, but this was limited to conditions where there is significant variation
between the intervening elements (Gómez 2002). This is suggested to imply that
learners default to focusing on transitional probabilities between adjacent elements,
and will only switch to tracking non-adjacent elements provided that the adjacent
elements are sufficiently variable. Previous exposure to NADs has been shown to
help participants learn ALs which show less variance in the intervening elements
(Zettersten, Potter & Saffran 2020). This could also allow for correct processing
of NADs that are much less frequent in language, and thus be part of a potential
domain-general solution to the poverty of the stimulus problem. These were all
experiments using only nonce linguistic data, thus generalisability to non-linguistic
domains is not proven.

In the phonological (Newport & Aslin 2004), and also non-linguistic (musical)
(Gebhart, Newport & Aslin 2009) domains, statistical learning seems to be con-
strained as an acquisition mechanism for NADs, unless dependencies followed from
perceptual similarity cues such as consonants and vowels. Differences in human
and tamarin monkeys in which perceptual categories NADs could be acquired were
also found (Newport, Hauser, Spaepen & Aslin 2004). There thus seems to be limits
to the strength and generalisability of NAD statistical learning, more so than with
adjacent elements.

Recursion has also been investigated. One example is Fitch & Hauser’s (2004)
study, which shows that humans are shown to learn a centre-embedded recursive
structure such as an AnBn grammar, which is a structure that goes beyond the finite
state grammar design of Reber (1967). Conversely, tamarin monkeys are not able
to discriminate sentences based on familiarisation with this grammar, only for a
simpler adjacent-dependency sequential grammar (Fitch & Hauser 2004). Critics
have pointed out that this study’s experimental design did not guarantee that the
human participants actually learned a centre-embedded structure with mapping
between A to B at each level, and a replication study suggested that they might
have discriminated based on the acoustic differences between A and B syllables in
the experiment, and not the supposedly centre-embedded structures (Perruchet &
Rey 2005). The evidence for instantaneous learning of hierarchical structures by
humans, whether through use of a language faculty or not, thus seems to be lacking.

There has also been criticism of the AL methodological approach itself. The AL
design is limited, and has often employed a finite state grammar design, which
is a simpler system than Chomskian phrase structure grammar (Tao & Williams
2018: 1001-1002). It has also been shown that AL learning and incidental SLA
diverge markedly in the cognitive domain (Robinson 2005). Given these limitations,
these experiments are not enough to prove that domain-general mechanisms such
as transitional probability are powerful enough to capture the full complexity of
natural language (Yang 2004). Yang instead suggests that UG initially constrains the
learner to be attentive to certain statistical patterns over others.

The suggested combination of statistical learning and domain-specific innate
constraints could be formulated in a probabilistic system (Yang 2004: 452-454). An
example of this is found in probabilistic harmonic grammar, a Bayesian modification
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of Optimality Theory. There, the previously forbidden constraints upon parameter
setting in UG are penalised, but not outlawed; the more acceptable ones are given
a higher probability to occur, all given the prior of the innate language faculty.
This system can thus account for some of the strong tendencies in, for example,
word order as seen in typology, and shows similarly successful AL learning results
(Culbertson, Smolensky & Wilson 2013).

It is clear that language-like patterns, even those as complex as non-adjacent
dependencies, are possible to acquire through statistical learning, although invariant
elements or specific perceptual cues are needed. Furthermore, it does not seem to
be as generalisable to other mammals. As the languages used are simple, both in
form and structure, the findings’ applicability to natural language remains opaque.
An experimental ‘learner’ that can fully rule out any innate linguistic knowledge
would thus be useful.

4 Connectionist Models and Incremental Learning

An approach that allows for an artificial ‘learner’ of this kind can be found in
neural networks. Neural networks consist of units analogous to neurons, with
input and output units at each end, and hidden units in between. They are linked
together, and the strength of these connections can be modified by the learning
algorithm like adjusting weights, providing information that is integrated in parallel
by each neuron (Abdi 1994). If the strength of the connections is randomly set at
first, then it is possible to verify that learning is not based on any domain-specific
system, but defined by the initially domain-general statistical learning algorithm.
Neural networks are particularly sensitive to early data, as that is when the initial
constraints for the hypothesis space are set (Elman 1993: 85-95).

Elman (1993) investigated NAD and recursion acquisition using recurrent neu-
ral networks (RNNs), which include a set of context units that feed the previous
hidden unit activations back into the network together with the new input (Elman
1991: 95-96). RNNs struggled to learn these more complex structures, but they
were considerably more successful when incremental learning was implemented,
which entailed starting with simple sentences, and progressing to higher levels
of embedding later. This was thought by Elman to not be as representative of the
natural learning environment, as he suggested children are still exposed to mostly
adult language during acquisition. He hypothesised that incremental learning could
instead be realised by restricting the memory of the network at first, then grad-
ually increasing it, thus simulating internal constraints upon learning. Similarly
successful results were obtained for this framework (Elman 1993).

Incremental learning might show success in neural networks due to statistical
information being easier to encode when the (perceived) input is simpler, and this
bare structure can then be generalised to more complex structure. An equivalent
mechanism could be available for children, and might explain their quick acquisition
of language in all its complexity (Newport 1990). Adults might not be able to do this,
as they have already constrained their language learning space by much data and
experience. Thus, statistical, or incremental learning might start as an application
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of domain-general learning algorithms, but once training within a domain has
progressed, a human or neural network would henceforth be constrained by their
domain-specific learning function.

Unfortunately, Elman’s original findings have seen limited success in replication
in the neural network domain (Rohde & Plaut 1999, 2003). There is, however,
recent evidence from AL experiments with human participants that has found that
externally constrained incremental learning better facilitates learning of complex
embedded AL structures (Poletiek, Conway, Ellefson, Lai, Bocanegra & Christiansen
2018), although there is always a general trend of lower performance at progressively
higher levels of embedding. These researchers do not follow Elman’s dismissal of
externally imposed incremental learning, arguing that a lot of infant-directed speech
is simpler in form.

Other studies have found the same effect, and have also discovered that initial
exposure to adjacent or non-embedded exemplars is necessary for incremental
learning to apply (Lai & Poletiek 2011). In a similar vein, semiartificial learning
experiments have demonstrated implicit learning of recursive structures, and that
they can be subsequently adapted to higher levels of recursion (Tao & Williams
2018). This could still be an example of discovering or activating a rule for recursion,
which is more in line with generative assumptions, although it could also be an
example of a domain-general process of incremental learning.

RNNs have also been shown to be able to handle NAD structures in natural
language, such as subject-verb agreement in English, but this required explicit
grammatical target training (Linzen, Dupoux & Goldberg 2016). Another experiment,
however, has found that an RNN that is only trained as a general language model can
almost match human performance for subject-verb agreement in Italian, even when
nonce words are used, thus suggesting that acquisition of deeper syntactic structure
has occurred (Gulordava, Bojanowski, Grave, Linzen & Baroni 2018). Further and
more conclusive neural network experiments with data from natural language could
strengthen the domain-general argument, as some of the methodological issues
with AL experiments are bypassed, though it is still possible that neural network
learning algorithms and human learning are not exactly equivalent processes.

5 Language and the Brain

Another salient issue for the discussion of domain-generality and domain-specificity
is the research on syntactic processing in the brain. Are there areas or activation
patterns of the brain that are unique to language, even for syntax, or do they overlap
with other domains?

Traditional neurolinguistic models have often followed the Wernicke-Lichtheim-
Geswind (WLG) model, which situates the language faculty responsible for syntactic
processing in the left perisylvian cortex, with comprehension centred in the temporal
lobe (Wernicke’s area), and production in the frontal lobe (Broca’s area) (Hagoort
2013). The equivalent system has been observed in non-human brains as well, for
example, in songbirds’ song processing and production faculty (Moorman, Gobes,
Kuijpers, Kerkhofs, Zandbergen & Bolhuis 2012).
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Interestingly, Broca’s area has also been found to have modular subdivisions
within the linguistic domain. An experiment (Goucha & Friederici 2015) which
isolated input to contain no semantic cues, nor any derivational morphology, has
found that while there is broad activation within the left hemisphere in full, seman-
tically complete sentences (Brodmann areas 44/45/47), only Brodmann area 44 is
active in these purely syntactic input conditions (pp. 299-300). This has been taken
as evidence for the modularity of language processing in the brain, with syntax
being processed separately from semantics, which further strengthens a hypothesis
of neurological innate capabilities for syntax.

However, the traditional WLG model has been questioned. Hagoort (2013) con-
ceptualises the function of Broca’s area to be less restrictive than domain-specific
linguistic processing, instead defining it as a general assembler of linguistic struc-
ture. This includes structures that violate phrase structure grammar, as experiments
with ALs limited to sequentially ordered recursion show activation for this area in
the same way as natural syntax (Petersson, Folia & Hagoort 2012). Even by simply
following the WLG model, there is evidence for Broca’s area being involved in more
cognitive domains than syntactic processing. Broca’s area has been found to be
activated for music processing, with damage in this area resulting in both problems
with syntax comprehension, and music perception (Patel 2003). There are indeed
neurological and structural correlates between language and music processing in
multiple areas (Jäncke 2012), which the attempts to formulate a formal generative
grammar of music in analogy to the hierarchical structure of generative language
(Katz & Pesetsky 2009, Lerdahl & Jackendoff 1983) might have illustrated.

Alternatively, as both language and music involve complex relationships between
sequences, it has been suggested that Broca’s area is involved with domain-general
sequence learning, and that no domain-specificity or modularity, such as a language
faculty applying Merge, needs to be defined (Christiansen & Chater 2015: 4-5). The
human brain seems to process hierarchically complex sequential input including
language in fairly similar ways (see, e.g., Forkstam, Hagoort, Fernandez, Ingvar &
Petersson 2006, as these processes all activate Broca’s area amongst others, but there
does seem to be some modality-specificity related to sensory input; particularly
phonological data might be processed differently from other kinds, Conway & Pisoni
2008).

The human ability for complex sequence learning might also have a genetic cor-
relate. The FOXP2 gene has been shown to be related to sequence learning abilities
in humans, as mutation of this gene can result in both speech and orofacial motor
impairments. Two amino acid changes occurred after humans and chimpanzees
split evolutionarily (Christiansen & Chater 2015: 4); this could then possibly be an
explanation for differences in language learning abilities between humans and other
primates (see, e.g., Newport et al. 2004).

A recent experiment using functional near-infrared spectroscopy (fNIRS) data has
found, however, that 2-year-old children can detect linguistic NAD violations, but
not 3-year-olds, while the reverse is true for purely tonal NAD data, thus suggesting
differences in neurological processing between these domains (van der Kant, Männel,
Paul, Friederici, Höhle & Wartenburger 2020). There is also counterevidence for
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music being a separate system from language, coming from a case of amusia where
the patient retained speech and rhythm processing abilities (Piccirilli, Sciarma &
Luzzi 2000).

Another potential problem with many of the studies that suggest equivalent neural
sequence learning and linguistic processes, is that they in some cases use sequence
learning stimuli which either diverge structurally very little from generative syntax
(Forkstam et al. 2006, Petersson et al. 2012), or involve a phonologically permissible
grammar based on simpler formal systems than what Chomsky defines for human
language (Christiansen, Conway & Onnis 2012, Christiansen, Kelly, Shillcock &
Greenfield 2010). While these experiments do provide evidence for the argument
that the areas of the brain involved in syntactic processing should not be restricted
to simply being the language faculty as generative theory currently describes it, a
looser theory for the language faculty that is constrained to any simple recursive
operation, and which also includes simpler grammatical operations in the speech
modality, might still be possible. Nevertheless, it is unclear what would remain
of any function of an innate language faculty if it was further weakened from its
incarnation as Merge.

6 Discussion and Conclusion

In this paper, I have reviewed literature on whether fundamental principles of
generative syntax such as NADs and recursion can be accounted for solely by
domain-general processes. I started by laying out these principles as they arose in
syntactic theory. Chomsky himself has in later years narrowed the strictly universal
element of UG to recursion, yet recursion is still not necessarily universal, neither
within individual languages, nor crosslinguistically. Nevertheless, even if it is
restricted, both recursion and NADs occur prevalently in human language. Is the
ability to process these structures then domain-general or domain-specific?

Statistical learning experiments, using ALs of a finite state grammar design,
have effectively demonstrated quick learning of adjacent dependencies which might
inform syntactic knowledge, but the evidence for NAD acquisition in this paradigm is
subject to further constraints, and this finite state grammar AL design does not allow
for recursion, which reduces its veracity for describing natural syntactic diversity.
The incremental learning approach arising from Elman’s (1993) RNN research shows
greater success, even with complex centre-embedded structures, also when it has
been extended to the AL domain with human participants. Nevertheless, neural
networks are not humans, and Elman himself criticised the validity of external
constraints on incremental learning as a model for child language acquisition. It is
also possible that domain-general statistical learning is combined with UG in the
brain, given the success of some probabilistic phrase structure grammars.

I also discussed the neurological evidence for domain-generality. While there is
evidence for modular and language-specific activation of the brain, including for
syntax in Broca’s area, there is also evidence for the same areas being activated for
other sequence processing and learning tasks, which together with some genetic
evidence could suggest that while human brains are adapted for complex sequential
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processing, this is not a strictly domain-specific ability. However, the sequence
learning evidenced in these experiments could still fit within a looser language
faculty interpretation.

Indeed, a fundamental problem with trying to rule out any domain-specific
component to syntactic processing is that the definition of the language faculty
could continue to get broader in scope, broader in which modalities it allows, as
evidenced by the idea of generative music. A question to keep in mind here might
be whether either approach provides a simpler explanation of observed phenomena
than the other. If domain-general sequence learning abilities are shown to perfectly
converge with natural language syntax learning, both in learning outcomes and in
brain activation, then it would arguably be a simpler explanation of overall human
learning abilities.

In further research, this could be evidenced by comparing learning and brain
activation for recursive and NADs in both naturalistic ALs and non-linguistic equiv-
alents. The same ALs should also be given to a neural network, following a similar,
possibly incremental, training strategy, in order to assess the abilities of a purely
statistical learner.
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