Extending Parametric Comparison

James Baker, Elena Isolani and Ian Roberts SyntaxLab, University of Cambridge, $16^{\text {th }}$ November 2020

1. Project overview

- Basic goal is to develop a database of parameter values in the form of a "parametric grid" (see Table A below);
- 76 clausal parameters for 40 languages;
- Combined with Longobardi's (2018) 91-parameter nominal database, this will give a total of 166 clausal and nominal parameters (Longobardi et al have data on 77 languages altogether);
- The database can then be used for theoretical, historical and computational investigations.

The basic idea (highly simplified): morphosyntactic features

- is number marked in nominals in L?
(English: YES; Japanese: NO)
- is there a system of articles in nominals in L?
(English: YES; Japanese: NO)
- is there a system of classifiers in nominals in L?
(English: NO; Japanese: YES)

The basic idea (highly simplified): word order

- Possessor > Possessee

John's sister John-no imooto-ga (Japanese)

- Possessee > Possessor
la soeur de Jean (French)
chwaer Siôn (Welsh)

A real example (from Longobardi et al 2013:5)

- P4: NP over D separates languages in which most elements normally associated with the D-area, such as "articles" or, in some languages, demonstratives and numerals, surface phrase-initially in the DP (e.g. Indo-European languages) from languages wherein they occur in absolute phrase-final position (e.g. Basque); this is taken to be a signal that the whole complement of D raises to some position to the left of D.
- [D NumP]
- [NumP D (NumP)]

		TABLE A		5 sc	It	Sp	Fi	Pto	Rm	Gra
1	FGM	\pm gramm. morphology	FGM	+	+	+	+	+	+	+
2	FGP	\pm gramm. person +FGM	FGP	+	+	+	+	+	+	+
3	FGN	\pm gramm. number +FGP	FGN	+	+	+	+	+	+	+
4	GCO	\pm gramm. collective $\quad \rightarrow+$ FGN	GCO	0	0	0	0	0	0	0
5	FGG	\pm gramm. gender +FGP	FGG	+	$+$	+	+	+	+	+
6	NOD	\pm NP over D +FGP	NOD	-	-	-	-	-	-	-
7	FSN	\pm feature spread to N +FGN or +GCO, -NOD	FSN	+	$+$	+	+	+	+	+
8	FNN	\pm numb, on N +FSN	FNN	+	$+$	$+$	-	+	+	+
9	CGB	\pm gramm. boundedness	CGB	-	-	-	-	-	-	-
10	FIN	\pm free incorporation +CGB	FIN	0	0	0	0	0	0	0
11	DGR	\pm gramm. article +FGP	DGR	+	+	+	+	+	+	+
12	CGR	\pm strong article -CGB, +DGR, - -FNN	CGR	+	+	$+$	0	+	+	+
13	NSD	\pm strong person (+FGN, $\rightarrow+$ FSN) or +DGR	NSD	+	+	+	+	+	+	+
14	DPQ	\pm free null partitive Q +FNN, ++ CGB	DPQ	-	-	-	0	-	-	-
15	DCN	\pm article-checking N (+FGN, $\rightarrow+\mathrm{FSN})$ or +DGR	DCN	-	-	-	-	-	+	-
16	DOR	\pm def on relatives +DGR	DOR	-	-	-	-	-	-	-
17	DIN	\pm D-controlled infl. on N +FSN	DIN	-	-	-	-	-	-	-
18	CPS	\pm plural spread from cardinals +FSN, ᄀ+GCO	CPS	+	+	+	+	+	+	+
19	NPA	\pm numerical (partial) atomizer +FGN, +CGB	NPA	0	0	0	0	0	0	0
20	BAT	\pm atomizer +NPA, -DGR	BAT	0	0	0	0	0	0	0

Calculating distances

- The distance between two languages (X, Y) is $\delta(0 \geq \delta \geq 1)$ determined by the Jaccard formula for the ordered pair $\langle i, d\rangle$ (where $i=$ the number of identities in parameter values and $d=$ the number of differences)

$$
\frac{i}{i+d}
$$

- Apply phylogenetic software to produce the optimum tree representing the syntactic distance between each pair of languages in the sample.
- Next three slides:
- distances for all the language pairs in Table A;
- zoomed-in portion of this table;
- KITSCH tree for the parametric distances (Longobardi et al 2015).

\begin{abstract}

	16	kl	Sic	$1 t$	Sp	F	Pid	Am	Git	$6{ }_{6}$	E	0	If	lee	1 ll	Bl］	SC	Sto	Pl	缡	1	Wed	l_{1}	Hi	Far	${ }_{3} 3$	｜lan	Can	Im	ap	A	het	HU	Et	Fin	Tir	Bur	18	W8	W0
kid	1	0.416	0276	023	023	0267	0.23	0226	0.3	0，3	0,3	0287	0233	0233	0233	023	026	0226	0.26	0226	0276	0.86	0.34	0314	0488	0337	0.56	0.56	0.19	0.65	0.39	0276	0.16	0.2	024	0.12	13.4	0.41	0,375	0.45
Hil	0416	0	0,29	0，24	0331	0.361	0，34	0，42	0388	0388	0,42	0.12	0.316	0，380	0,16	0.318	039	0，39	0,39	0,39	0.36	0，301	0.3	0.3	0.31	0275	0，44	0.44	0.312	0，46	0338	0.17	0.313	0.27	0.29	0,176	0.31	0,34	0，32	0,511
Sif	0276	0.27	1	00288	0.0830	0， 1×6	0.026	0.087	0.11	0，17	0，59	0,11	0.111	0,18	0,13	0,18	0.175	0.15	0，15	0,115	020	024	0，122	0,12	0.33	0276	0.375	0,375	0276	0，3／4	0273	0.262	0225	023	0.26	0338	0.31	0229	029	0.312
1	023	0.32	0，088	1	0， 16	0，441	0，4	0.265	0.18	0.16	0，12	0,116	0116	0,1	0，18	0，14	01.16	0,19	0，17	0.19	023	028	0，18	0,188	0333	0211	0.38	0.38	0276	0.314	0273	0.22	024	0231	0.237	0.24	0381	012	0 m	0，312
Sp	023	0，361	0， 183	1.6	1	1，2\％	0．2．	Nabl	12	0.2	0，174	018	018	0，17	0，14	1．1	0.14	0,16	0，4	0，163	0.6	1299	0，184	0，14	0，36	0.23	V_{+}	0.	018	0.2	1067	077	OM2	026	020	0,318		OM2	OM	0.44
F	0.87	0.361	0,162	0.417	0，062	1	0,147	0，19	02.4	0213	0，122	0，13	0.193	0，166	0，176	0.17	1145	0,2	0，45	12	0.2	0.25	0，84	0，1／4	0381	0.23	0,6	138	0.31	0，34	0,11	0.3	02.2	0.23	024.	0133	0.3	0202	0 m	0,312
P	023	0.324	0，025	N．A	0.2	0，441	1	0083	024	0.214	0，12	0，116	01.16	0，14	0，18	0，163	016	0,9	0,17	1.19	4.4	024	0，180	0,818	$0 \cdot 33$	0241	0,0	1.3	0226	0，34	OM	023	028	0.31	0.37	0,34	0.36	0，94	0.9	0.312
Am	028	03.32	0， 0,67	0025	0，6612	0.19	0，083	1	0194	0.65	0，14	0，14	0104	0,16	0，12	0，118	0113	0,167	0,17	0,67	022	0.23	0，18	0，48	0.33	0271	0,36	1.38	018	020	023	024	0286	0.81	0 M 2	0,311	0.31	022	022	0.34
6ik	0.3	0,380	0.1	0,14	022	024	0，24	0,14	1	0，066	0.28	02．${ }^{1}$	028	0,2	0，180	02	（146	0.13	0，13	0.13	022	0.23	0.25	0225	$0: 34$	0275	0.31	1.37	087	0.35	029	023	026	026	0275	0.42	03.3	0.37	0,38	0222
af	0.3	0,388	0.17	0,16	0.2	0213	0，24	0，173	00106	0	0，188	0,14	0188	0.2	0，167	012	1 13	0.156	0，186	0，168	0227	0.23	0.22	0 ME	0.24	0275	0,37	0.31	0.87	0.35	0.29	0.26	02.33	0.02	026	0,14	0.33	0331	0.331	0.20
E	0.3	0.32	0,19	0，122	017	0.19	0，12	0,14	028	0，澵	1	0.0612	0，946	0,12	0，186	0218	11.12	0235	0.15	0.115	0.14	0，143	0，24	024	0216	0，146	0.2	126	0.3313	0，36	0.31	122	023	024	0.2	0.12	023	0.29	0.29	12.4
0	086	0.32	0，111	0，116	118	0，13	0，16	0，14	D2A	0，172	0.662	1	0.816	0，402	0，46	0，17	119	0，149	0,14	1.17	0.19	0.16	0,28	026	027	0,175	0.26	026	0.31	0.35	0，11	122	028	0.2	12	023	0200	0.27	0.87	12.4
Di_{8}	023	0.316	0，1i1	0，116	0118	0.13	0，16	0，14	020	0,16	0,186	0.0816	1	0，16	0,085	1.14	0,14	$0,16{ }^{5}$	0，16	0,163	0.96	0．19	0，171	0,111	029	0.17	024	0214	0.3	0.21	077	0.24	023	0.17	0.	0278	029	0.2	12	1，1／13
lie	023	0370	0，17	0.17	0.17	0.166	0，49	0.10	12	0.2	0,12	00982	0.16	0	0，1088	0.12	1.187	010	0，13	1.13	013	0，116	0，16	0.15	023	0,15	023	023	0276	0.92	0.2	1.19	028	0.171	0,175	027	0.92	029	029	0.25
Nor	023	0.316	0，133	012	0149	0.16	0，18	0.12	019	0167	0．1060	0.896	0.036	0， 1×88	1	0.17	0，14	U，何	0，161	0，168	0235	029	0，111	0.11	0.9	0.11	214．	2．1．	0.3	0．3	077	V2．	023	0.171	1.2	0.278	029	0.2	12	0.1313
Bg	0238	0338	0，18	0，143	0.1	0，17	0,170	0,18	0.	0，2	0.18	0，17	0.1	0,12	0，137	1	0，9M1	0，602	$0, \mathrm{MP}$	N062	2． 210	029	0，17	0,15	0333	0.175	0.331	0,331	0288	0，4	023	0.125	0233	0.2		0278	0.316	027	0.27	0.315
SC	028	0,39	0，173	0,167	0,14	0.195	0，16	0，14．	$01 / 16$	$01 / 33$	0，12	0,18	0.1	0,167	0.4	$0 \mathrm{OM9}$	0	O， 024	$0,16{ }^{10}$	Na， 10	0．1．4	0.158	0，15	0.1812	0287	0.195	0.32	0.321	026	0.310	0211	0.22	0.21	0,19	0.17	1.25	0.318	022	022	0267
910	026	1，398	0，176	0.19	1）1163	02	0,19	0，167	0143	0，566	0.205	0，49	0116	0,119	0,16	0.062	0，004	1	0，468	0024	0.24	0,168	0,16	0,14	028	0,165	0.26	0.31	026	0，30	0211	02.2	0.6	024	0,19	126	0：3	0273	027	0.68
Po	026	138	0,15	0，17	0,14	0.19	0，19	0,16	0，\％	0，160	0，16	0，4．4	0116	0，13	0,16	0，9，	0， 012	0，M 42	1	0．a．	1．4．4	0，178	0,18	0,16	027		0．36	0.31	0 Cl	0，30	0211	OM2．	$0{ }^{3}$	024	0,14	12	0：3	0278	12.15	0067
RIIS	026	0.38	0，175	119	1，163	0.12	0，9	0,16	013	0.166	0， 11	1.11	0.16	0,13	0,16	0.022	0．4A8	0，04．	0， 124	1	01.4	0,158	0，18	0，122	023	0,165	0.26	0.31	02.26	0，318	0211	$0 \mathrm{ML2}$	0.6	024	0,4	12	0.18	027	028	00.67
π	0276	0,36	0.19	0238	Wh	0，2	0，29	0221	022	022	0,4	0,68	0.25	0，133	0.205	0.215	0，14	0,12	0，154	0.15	1		028	N／b	028	0.4%	0.46	0.48	0.37	0，3／4	0.82	024	0.9	0.237	0 \％	0,12	03.3	0,32	0.81	0338
Wel	028	0.36	0214	0238	029	022	0.24	0.23	02.3	0233	0，14	0，163	229	0.176	0.19	0.19	0158	0.158	0,180	0.158	0	1	0.27	0.27	0235	0.111	0.46	0.45	0，3	0，34	02818	12.2	028	0235	024	0.3	0.12	0,312	0.81	0313
1 ld	0.34	0，3	0,16	0，188	0184	0.18	0，18	0，188	022	022	0.24	0.22	0.171	0，15	0，17	0,17	1195	0,19	0,16	0，1／2	026	0.27	1	1	OM2	0,116	0.28	125	0.26	0.29	0278	0.34	0.2	0.175	0211	02.4	0.2	0226	0.26	0288
Hi	0.34	0，3	0,16	0,18	014	0,1818	0，188	0,188	0225	0225	0，24	0225	0.171	0，15	0，171	0，175	0195	0.14	0，96	0.19	0.6	0.27	0	0	0.22	0,116	0,2	126	0.26	0.29	027	0,24	0.2	0,175	0211	024.	0.2	0.26	$02 / 2$	0288
Far	0488	0,37	0，373	0，313	1361	0.36	0，33	0,33	0.24	0，34	0,16	12.7	0.87	0．23	0.27	0,331	0237	0.87	0.271	0.27	0267	1235	0．20	0.12	1	0，184	0.29	0.29	0.13	0,3	0,3	0,30	$0 \underline{2 m}$	0，4\％	02016	0，17	0140	028	0．4．	0281
P_{98}	0.37	0275	0.216	0.211	0237	023	0.21	0.211	0275	0.25	0，146	0.15	0.71	0，15	0,11	0，17	01155	0.195	0,45	0,15	0.14	0.17	0，116	0,116	0.14	1	0.28	0288	0288	0.22	0,33	0.34	01.16	0,16	0,184	0，16	0.16	0.192	0,12	0,378
Illa	036	0.44	0,175	188	0.4	0，\％	0，36	138	0.37	0,7	0．13	0280	024	0\％	0.214	0，338	0.31	0．361	0,361	0，311	04.4	0，45	0.6	12	029	0288	1	0083	014	0，3\％	0.52	0,51	024	0.29	0.2	12.21	0.41	0．23	0280	0，314
Can	0.36	0.44	0,375	138	04	0,36	0，36	0.38	1.37	0，37		0.48	024	026	0.24	0,338	0.21	0.36	0，361	0,31	04，	0，45	N23	122	028	0288	0，2812	1	042	0，33	0.22	0.51	0.4	028	0.2	0.281	0.24	0231	0.20	0，34
Ind	129	0.312	0276	0216	0.87	0,31	0.276	0.2	0.87	0.287	0，33	1.31	0,3	0.26	0,3	0288	026	0226	0226	0226	037	0，31	0.16	02%	0.313	0.28	0，49	0.48	0	0.38	0,32	0.31	029	0206	0.26	0，198	0.26	0.29	0，331	0.
dap	086	0，461	0,34	0，34	023	0，3／4	0，34	0.218	0.37	0.35	0,38	0,75	0.2	0.22	0，2	124	0.38	0,318	0，36	0,178	0.34	0.34	0.298	028	0.36	0.22	0，33	0,33	0.18	0	0，36	0.46	0.31	0，30	0，36	0.36	0375	0.2	0．4	0,941
Ar	039	0.36	0.27	0.273	087	0.31	025	0.24	029	023	0，31	1.31	027	0.25	072	0239	0211	0211	0.211	0.21	0.22	0.88	0.28	0278	0.38	0,33	0，52	0.32	0323	0.38	1	0118	0.39	0.33	0，3／3	0，4，	0.41	0.34	0，34	0.38
Het	0276	0.41	0.120	0，22	027	0，3	0，26	0，24		$02 \% 5$	026	023	0214	0，19	0.24	0.215	$0 \underline{M}$	020	0，20	0.22	024	02	0，34	0.34	0.30	0，34	0.51	0.51	0,31	0.46	0，12	1	0.31	0,32	0．24	0，3m	046	0312	0.818	0，48
Hu	0.19	0．33	0.22	02.4	012	0238	0,28	0.26	026	0,23	0.238	0288	023	028	0.231	023	027	0.23	0268	0.26	0.29	028	02	U	022	0,16	U．A	VA	029	0.30	0，39	0，31	0	0.115	0,962	0， 0.92	O，1／4	022	0,10	0.34
Et	0.29	0.27	0.26	0.21	0268	0.27	0.231	0.21	0.26	0.12	0.24	121	0.171	0，7\％	0,71	12	0.19	024	0.24	02.4	0287	0.35	0，175	0.15	019	0，15	0.29	0289	0286	0，34	0，303	0,34	0115	1	0，244	0,16	0.46	0.15	0，180	0.37
Fin	02.4	029	0.2	028	$0{ }^{6}$	024	0.23	OM2	076	0.23	12	0.	12	0，17	0.1	0125	1．171	0，\％ 10	0，\％	0，16	0.16	1.22	0，211	0.211	0.26	0，184	0.12	1312	0206	0，3\％	0,36	0．4．	0．9\％2	0，24	1	0.15	V1／4	0.16	030	0，36
Iur	0.22	0.316	0.331	0.24	$0: 33$	0,331	0，24	0，311	0313	0.313	0.12	0.29	028	0.37	0278	0278	025	0.6	0.2	025	0.313	0.3	0.24	024	016	0，175	0.83	021	019	0，3\％	0，424	0,33	0．992	0.16	0，12	1	0075	0.27	0276	0,36
Bir	03.4	0,374	0,311	0，36	038	0.39	0，361	0,361	0.33	0,33	0.231	0.20	029	0.20	0.89	03.36	0.318	0,318	0，36	0,3818	0.33	0，32	0.886	0285	019	0，15	02．	0．24	020	0.35	0.41	0,46	014	0.46	0，84	0，16	1	029	0.81	0.938
c8	0411	0.24	0212	0.212	022	022	0，4	024	0.38	$0,3 x^{1}$	0.29	02.2	0.	0.22	0.2	0.27	0.24	0273	0.713	0.15	0.12	0，32	0.26	0.216	027	0，12	0.31	0.21	029	0.2	0，34	0,12	024	0.12	0，16	0.217	029		0，64］	0.313
แ6	0.315	0,32	0.29	022	022	0.22	0，4 4	022	0.38	0,361	0.29	02.7	0.	0.22	0.2	027	024	027	0.278	0213	0.81	0.24	0.16	0216	0．34	0.152	0.20	0289	0331	0．24	0,34	0.81	0.13	0.16	033	0276	081	0,963	1	0.338
W0	0445	0.511	0，32	0，312	0．4	0.312	0，32	0，34	0.22	022	0，24	0.24	0.13	0235	0,16	0,376	028	0.26	0.267	0.27	0.33	0333	0.288	028	0.81	0,37	0，34	0，34	0.4	0，94	0,371	0，48	0．34	0，31	0，36	0，313	0.39	0,33	0338	，

	10	N11	Sic	1	.	H	97	m	Gid	46	E	0	a
10	0	0.16	026	123	028	027	023	026	13	03	0.3	087	023
N0	016	1	081	13.4	0.31	0.31	0.31	030	0 0,3	0,380	13.3	0.2	036
Sic	026	028	1	1028	0×3	0.62	OMS	0.81	0.17	0.17	189	0.111	0,111
11	0 23	0.34	M28	0	0.6	OM1	M.	0.63	014		112	0116	0116
S	0 03	$0: 31$	0×3	016	1	00\%	1.1	0 K 2	12	12	0.17	018	0.18
H	028	0.31	OM2.	OM11	0 M \%	1	OM1	0118	024	123		013	013
P	0 23	0.38	$0 \mathrm{M} / 5$	O.4.	0.12	OM17	1	0×3	1224	12.	112	0116	0.116
An	026	030	1017	0\%\%	0.62	0.18	0×3	1	014	$1 / 18$	0.74	0.74	0.14
Gik	0.3	0 0,8	0.17	0.10	0.2	12.4	122.	014	1	W15	128	02.	028
96	13	0.38	0.17	1.16	02	123	12.4	01.10	M15	1	0118	0 0,	O118
E	03	030	019	0112	0.17	0112	0112	0.17	028	Q13	0	$00^{2} 2$	0.06
0	028	0.2	0.111	0116	018	018	0.116	0.17	12.		0.62	1	0.065
a	123	0316	$1: 111$	0.115	018	0 13	0116	014	028	1018	0\%6	0 Cb	1

Advantages compared to lexically based reconstruction

- discreteness: the values of a parameter do not form a continuum or cline of any kind
- binarity: a maximally simple range of possibilities
- finiteness: the number of parameters is finite
- no uncertainty of comparanda: we are in principle always sure when we are comparing like with like (Guardiano \& Longobardi 2003:4)

Theoretical/learnability issues

- Parameter expressions (Clark \& Roberts 1993):

The expression of a parameter P is any string S of language L such that P must be set to determinate value in order for S to be grammatical in L.

- P-expressions represent simple existential statements concerning superficial simple properties of strings, e.g.:

P4+: articles final in DP.

- What kinds of P-expression are needed? Are there defaults?

Two really big questions

- Theoretical: implicational relations among parameters/parameter hierarchies/parameter types (macro/meso/micro; Biberauer \& Roberts 2017, Biberauer 2017, 2018, Roberts 2019). Also the question of markedness.
- Historical: can we go back further than traditional comparative reconstruction?
"the source of the Uralo-Altaic relation must be more ancient and stronger than those reflected in ... phonetic/phonemic exchanges"
(Ceolin et al, forthcoming)

2. Defining the parameters

Goal

- To extend the list of parameters in $\mathrm{EP}(\mathrm{N})$ into a (broadly parallel) list of parameters for $\operatorname{EP}(\mathrm{V})$

Criteria

Three (overlapping) sources of inspiration for EP(V) parameters:

- Parallels to the $\mathrm{EP}(\mathrm{N})$ parameters listed in the Appendix to Longobardi et al. (2013) ("L13")
- Parameters drawn from Roberts (2019)
- Parameters accounting for salient patterns of variation in WALS (Haspelmath et al. 2005, Dryer \& Haspelmath 2013)

Notational note

- L13's parameters are labelled p1, p2, p3 ...
- These are relabelled here as $P_{N} 1, P_{N} 2, P_{N} 3 \ldots$
- keeping the numeric part unchanged
- Our new parameters are labelled $\mathrm{P}_{\mathrm{v}} 1, \mathrm{P}_{\mathrm{v}} 2, \mathrm{P}_{\mathrm{v}} 3$...
$\Rightarrow P_{N} n$ is parallel to $P_{V} n$ in some cases, but not consistently

L13 parallels

- Parameters $\mathrm{P}_{\mathrm{v}} 1$ to $\mathrm{P}_{\mathrm{v}} 50$ are mostly proposed as parallel (to varying extents) to parameters in the range $P_{N} 1$ to $P_{N} 51$
- $P_{V} 75$ and $P_{V} 76$ are tentative parallels for $P_{N} 54$ and $P_{N} 55$, but see later
- Many parameters in the $\mathrm{P}_{\mathrm{V}} 51$ to $\mathrm{P}_{\mathrm{V}} 74$ range operate along similar lines to L13's parameters, but they don't constitute direct parallels

L13 parallels

- Very close parallels between $\mathrm{P}_{\mathrm{N}} 1-\mathrm{P}_{\mathrm{N}} 3$ and $\mathrm{P}_{\mathrm{V}} 1-\mathrm{P}_{\mathrm{V}} 3$
- $P_{N} 1 / P_{V} 1$ Grammaticalised Person
- $P_{N} 2 / P_{v} 2$ Grammaticalised Number
- $P_{N} 3 / P_{V} 3$ Grammaticalised Gender
- But considered distinct
- English: $+\mathrm{P}_{\mathrm{N}} 3$ (himself/herself), - $\mathrm{P}_{\mathrm{v}} 3$ (no gender agreement on verbs)

L13 parallels

- P_{N} 4: NP over D
- $\mathrm{P}_{\mathrm{v}} 4-\mathrm{P}_{\mathrm{V}} 7$: roll-up options in CP
- $P_{\mathrm{V}} 4$ TP over C
- $\mathrm{P}_{\mathrm{V}} 5 \mathrm{vP}$ over T
- Pv6 VP over v
- $P_{v} 7$ Object over V

L13 parallels

$-P_{N} 5$ to P_{N} 19: grammaticalisation and locus of realisation of various features within DP (e.g. definiteness, boundedness ...)

- This set is paralleled in a broad sense by $\mathrm{P}_{\mathrm{v}} 8$ to $\mathrm{P}_{\mathrm{v}} 21$
- More specific parallels can be identified between many pairs of parameters in the two sets

L13 parallels

- $P_{\mathrm{V}} 8 \varphi$-feature checking on V
- $\mathrm{P}_{\mathrm{V}} 9 \varphi$-feature spread to V
- $\mathrm{P}_{\mathrm{V}} 10$ Grammaticalised Tense
- P 11 Strong Tense
- $\mathrm{P}_{\mathrm{V}} 12$ Tense-checking V
- $\mathrm{P}_{\mathrm{V}} 13$ Tense spread to V

L13 parallels

- English is $+\mathrm{P}_{\mathrm{V}} 8: \varphi$-features are realised (sometimes) on V (V checks φ-features)
- [Lucy $\mathrm{T}_{3 \mathrm{sg}}$ [work- $\mathrm{s}_{3 \mathrm{sg}}$]]
- A + $\mathrm{P}_{\mathrm{V}} 9$ language would mark φ-features on both T and V simultaneously (φ-features spread to V)
- "Lucy does works"

L13 parallels

- Contemporary French may be a $+\mathrm{P}_{\mathrm{v}} 13$ language: tense realised on both T and V in the passé composé ("tense spreading"):
- Lucie a travaill-é "Lucie worked"

PAST
PAST

- (English periphrastic perfect Lucy has worked however shows aspect spreading)

L13 parallels

- $P_{\mathrm{v}} 14$ Grammaticalised Aspect
- $P_{\mathrm{v}} 15$ Strong Aspect
- Pr16 Aspect-checking V
- $\mathrm{P}_{\mathrm{v}} 17$ Aspect spread to V
- $P_{\mathrm{v}} 18$ Grammaticalised Mood
- $\mathrm{P}_{\mathrm{v}} 19$ Strong Mood
- $\mathrm{P}_{\mathrm{v}} 20$ Mood-checking V
- $\mathrm{P}_{\mathrm{v}} 21$ Mood spread to V

L13 parallels

$-\mathrm{P}_{\mathrm{v}} 11$ Strong Tense, $\mathrm{P}_{\mathrm{v}} 15$ Strong Aspect, $\mathrm{P}_{\mathrm{v}} 19$ Strong Mood concern movement: strong heads trigger V movement (unless filled by an auxiliary)

- Different degrees of V movement as described by Schifano $(2015,2018)$ for Romance

L13 parallels

- $\mathrm{P}_{\mathrm{N}} 10$ Free null partitive Q
- $P_{N} 14$ Definiteness on relatives
- $\mathrm{P}_{\mathrm{N}} 20$ Null-N licensing article
- $P_{\mathrm{N}} 22$ Feature spread to structured APs
- $\mathrm{P}_{\mathrm{N}} 23$ Feature spread to predicate APs
- $\mathrm{P}_{\mathrm{N}} 24 \mathrm{D}$-controlled inflection on A
- Pv22 Null prohibitive (Italian non fumare)
- Pv23 TMA on complement clauses (Irish go/gur)
- Pv24 VP-ellipsis licensing (Lucy has gone but Harry hasn't)
- $P_{v} 25 \varphi$-feature spread to "structured" Adverbs
- $P_{\vee} 26 \varphi$-feature spread to participles
- Pv27 φ-feature spread restricted to passive participles
- Pv28 Aux-controlled agreement on participles

L13 parallels

- $P_{N} 26$ Relative extraposition
- $P_{N} 29$ Free genitive
- Pr29 Complement clause extraposition
- Pv30 Free subject
- Pv31 VP over subject [=> many Vinitial orders]

L13 parallels

$-P_{N} 29-P_{N} 41$ concern genitives and possessives (i.e. possessive determiners: my, our etc.)

- A parallel for genitives is identified in arguments of the clause generally
- A parallel for possessives is identified in subject clitics

L13 parallels

- Argument parameters: based on the ergative parameter hierarchy of Sheehan (2017) (presented in Roberts 2019)
- $P_{\mathrm{v}} 32$ Theta-related case from v
- $P_{\mathrm{v}} 33$ Generalised theta-related case from v
- $P_{\mathrm{V}} 34$ Restricted theta-related case from v
- P 35 Extraction of ergatives
- Pv36 High absolutive
(ergativity generally)
(split-S)
(fluid-S)
(syntactic ergativity)

L13 parallels

- Pv38 Secondary agreement
- Object agreement, ergative agreement
- Rough parallel to $\mathrm{P}_{\mathrm{N}} 33$ Genitive features spread to N : "Argument features spread to V"
- $P_{\mathrm{v}} 40$ Marking of transitivity
- Rough parallel to $\mathrm{P}_{\mathrm{N}} 41$ Poss ${ }^{\circ}$-checking N (i.e. marking of N in the presence of a genitive): marking of number of arguments on V

L13 parallels

- Chol:
tyi i-jats'-ä-yoñ
PRFV A3-hit-TV-B1
"she hit me"

L13 parallels

Also note:

- P 37 Case-Agreement Dependency (after M. Baker 2008)
- Case/agreement split ergativity and other patterns (Bantu locative subjects)
- P 39 Noun Incorporation
- cf. the "Polysynthesis Parameter", M. Baker 1995
- Mohawk: ra-wir-a-núhwe'-s he-baby- \varnothing-like "he likes babies"

L13 parallels

$-P_{\mathrm{v}} 41$ Subject clitic distinct from agreement

- (Subject clitic without agreement: + $\mathrm{P}_{\mathrm{V}} 1 / 2 / 3,-\mathrm{P}_{\mathrm{V}} 8$, $P_{\mathrm{v}} 9,-\mathrm{P}_{\mathrm{v}} 41: \varphi$-features grammaticalised but not spread/checked on V)
- $P_{\mathrm{v}} 42$ Subject clitic enclisis
- Some Lombard varieties: an lisi-v mai di livar SCL=not read=SCL.2PL never of books "You never read books"

L13 parallels

- $\mathrm{P}_{\mathrm{N}} 42-\mathrm{P}_{\mathrm{N}} 51$: various further parameters relating to movement
- Parallels:
- Pv43 Tense on Modal
- P $\mathrm{V}_{\mathrm{V}} 43$ Aspect raising
- P 44 Voice raising
- $P_{\mathrm{v}} 45$ Strong v
- $P_{\mathrm{v}} 46$ Strong C
- Pv48 vP over Voice
- Pv49 EPP on T
- $P_{\mathrm{V}} 50$ EPP on C

L13 parallels

- Some parameters cover more specific subcases of the parallels proposed
- Pv71 Grammaticalised bounded aspect
- $P_{\mathrm{V}} 72$ Grammaticalised progressive
- $P_{\mathrm{V}} 73$ Aspect spread to V restricted to perfects
- French: Lucie travaille, Lucie a travaillé (- $\mathrm{P}_{\mathrm{v}} 72,+\mathrm{P}_{\mathrm{v}} 73$)
- English: Lucy is working, Lucy has worked (+P $72,-P_{\mathrm{v}} 73$)

L13 parallels

- Adjective Phrase parameters:
- Pv54 Definiteness on APs
- P ${ }_{\vee} 55$ Grammaticalised AP marker
- Possible parallels:
- Pv75 Tense on AdvPs
- Pv76 Grammaticalised AdvP marker
- Are these ever actually positively instantiated?

L13 parallels

- For a number of L13's parameters, no parallels were identified
- e.g. $P_{N} 21$ Structured APs: does the language have a class of adjective phrases with fixed ordering according to a universal sequence?
- Whilst one class of adverb phrases indeed shows fixed ordering according to a universal sequence (Cinque 1999), their existence does not appear to be subject to crosslinguistic variation

L13 parallels

- Other $\mathrm{EP}(\mathrm{N})$ parameters without obvious $\mathrm{EP}(\mathrm{V})$ parallels:
- $P_{\mathrm{N}} 25$ DP over relatives
- $P_{N} 27$ Free reduced relatives
- $P_{\mathrm{N}} 28 \mathrm{~N}$ raising with obligatory pied-piping
- $P_{N} 32$ GenO
- $P_{\mathrm{N}} 35$ Adjectival possessives
- $P_{\mathrm{N}} 37$ Clitic possessives
- $P_{\mathrm{N}} 38 \mathrm{~N}$-feature spread to pronominal possessives
- $P_{\mathrm{N}} 39 \mathrm{~N}$-feature spread to free genitive
- $P_{N} 52$ Free MOD
- $P_{N} 53$ Class MOD
- $\mathrm{P}_{\mathrm{N}} 56$ Consistency Principle

PHUG and WALS

- The parallels identified leave several salient parameters of variation within $\operatorname{EP}(\mathrm{V})$ unaccounted for
- Thus they are supplemented with various additional parameters drawn from / inspired by:
- the parameter hierarchies in Roberts (2019)
- some salient patterns of variation described in WALS

Following Roberts (2019)

- Nb. some of the PHUG parameters do have parallels already identified
- movement parameters (roll-up, head movement), alignment parameters
- Null subject parameters excluded as seem to crosscut nominal/clausal domains (though cf. Pv 30 Free subject)

Following Roberts (2019)

- Passives:
- Pv51 Grammaticalised Passive
- Pv52 Generalised Passive (German es wurde getanzt)
- Pv53 Restricted Passive (Hebrew *yehune "be pleased")
- $P_{\mathrm{V}} 54$ By-phrase

Following Roberts (2019)

- Ditransitives (after Sheehan 2017)
- Pv55 Dative Case
- Pv56 Obligatory Dative Case
- Pv57 Extended Dative Case
- P V 58 Theme over Goal
- Pv59 Ditransitive Theme Passivisation

Following Roberts (2019)

- Causatives (after Sheehan 2017)
- P ${ }_{\mathrm{V}} 60$ Theta-related case in causatives
> e.g. French faire-infinitif
> + Pv61 Causative-checking V
- e.g. Japanese tabe-sase-rare-ta eat-CAUS-PASS-PAST)
- Wh-movement
- Pv64 Wh-movement (after Huang 1982)

Following Roberts (2019)

- Negation
- Pv65 Minimal negator
- P ${ }^{\mathrm{v}} 66$ Neg-checking
- I haven't gone
- Pv67 Multiple negation
- I didn't do nothing
- P $\mathrm{V}_{\mathrm{V}} 68$ Neg-spreading
- French ne ... pas

Following WALS

- $\mathrm{P}_{\mathrm{V}} 62$ Imperative-checking V
- e.g. Limbu Ips-\&? sleep-IMP "sleep!"
- Pv63 Q-checking V
> e.g. Hunzib e才’e-čó-y go-PRES.1/2-Q "are you going?"
- P $\mathrm{P}_{\mathrm{V}} 69$ Grammaticalisation of Past
- $P_{\mathrm{v}} 70$ Grammaticalisation of Future
- $P_{\mathrm{v}} 74$ Grammaticalisation of Evidentiality

Problems

- For some of these, the identification of clear diagnostics is not straightforward
- Pv65: can the status of a negator as a maximal/minimal projection always be identified?

Problems

Minimal

- diagnostics: affix/clitic status or V-movement blocking => minimal
- but what about free negators where sufficient V-movement doesn't occur anyway?

Problems

- Pv48: Roberts (2019) gives an argument for vP over Voice in English, but not clear how easy this will be to identify crosslinguistically
- Pv70: does English have a grammaticalised Future? what about German? (cf. Comrie 1985)
- I will go; I go tomorrow
- Ich werde gehen; ich gehe
- Py74: what counts as "evidentiality"? what doesn't? (cf. Aikhenvald 2005, 2018)

The diagnostic questions

- Survey aimed at (primarily) syntactically trained native speakers for the purpose of data collection on parameter values
- For each parameter: a simple yes/no question and further clarification points

The diagnostic questions: examples

Parameter
 $P_{\mathrm{v}} 1$ (VGP) Grammaticalised Person in EP(V)

Pv4 (TOC) TP over C

Diagnostic(s)

Does the language show agreement for person within the clause?

- Person agreement (1 st/2nd/3rd) on verbs/auxiliaries/participles, or person-expressing subject clitics
- Exclude person-marking on (non-clitic) anaphors and person concord with adjectives
- Number and gender treated separately (see below)

Is C final in CP?

- Complementisers follow all core clausal material (excluding right-dislocated and extraposed material)

3. Parametric variation observed

PV1 (VGP) Grammaticalised Person in EP(V): Does the language show agreement for person within the clause?

PV2 (VGN) Grammaticalised Number in EP(V): Does the language show agreement for number within the clause?
$P_{\mathrm{V}} 3$ (VGG) Grammaticalised Gender in EP(V):

	CONDITION	FRENCH	ENGLISH	ITALIAN
$\mathrm{P}_{\mathrm{v}} 1$	Respectively			
$\mathrm{P}_{\mathrm{v}} 2$	Person/Number/Gender agreement on	+	+	+
$\mathrm{P}_{\mathrm{v}} 3$ verbs/auxiliaries/particip les.	+	+	+	

a) Maria è partita
b) Marie est partie
c) Mary has left

Gender agreement on the participle

Lack of Gender agreement on the participle

- $P_{\mathrm{v}} 7:(00 \mathrm{~V})$ Object over Verb: Does the direct object precede the verb?

	FRENCH	ENGLISH	ITALIAN
$P_{\mathrm{v}} 7$	-	-	-

[subj.p Elle [tp mange [vp la pomme]]]
[subj.p She [vp eats the apple]]]
[subj.p Lei [tp mangia [vpla mela]]]

- $P_{v} 7$ entails the negative values for Pv4-Pv6 (0-)

$\mathrm{P}_{\mathrm{v}} 4$ (TOC) TP over C:	Is C final in CP?
$\mathrm{P}_{\mathrm{v}} 5:(\mathrm{VOT}) \mathrm{vP}$ over T	Do tensed elements follow other elements (excluding complementisers, right-dislocated/extraposed material)?
P_{v} 6: (VOV) VP over v	Does VP move over v?

1 FOFC: If a phrase α is head-initial, then the phrase B immediately dominating a is head-initial. If a is head-final, B can be head-final or head-initial. (Holmberg 2000)

- Since in French, English and Italian the object always follows the verb, VP is head-initial. Therefore, according to FOFC, this phrase can only be governed by a head-initial phrase.
[ср ... C ... [[тр ... T ... [кр ... V] יו
- vP immediately dominates VP. Since VP is head-initial, vP has to be head-initial as well because of FOFC.
- Thus, Pv6 (VP over v) has to be -
- VP can't move over vP, otherwise we should assume that vP is head-final.
- TP immediately dominatedis vP. Since vP is head-initial, TP has to be initial as well because of FOFC.
- Thus, Pv5 (vP over T) has to be -
- TP can't move over vP, otherwise we should assume that TP is head-final.
- CP immediately dominates TP. Since TP is head-initial, CP has to be head-initial as well because of FOFC.
- Thus, Pv4 (TP over C) is -
- C can't be final in CP.

TENSE/ASPECT/MOOD

	FRENCH	ENGLISH	ITALIAN
Pv$_{\mathrm{v}} 10$ (GRT) Grammaticalised Tense	+	+	+
$\mathrm{P}_{\mathrm{v}} 11$ (STT) Strong Tense	$0+$	$0-$	+
$\mathrm{P}_{\mathrm{v}} 12$ (TCV) Tense-checking V	+	-	+
Pv13 (TSV) Tense spread to V	-	-	-

	FRENCH	ENGLISH	ITALIAN
Pv14 (GRA) Grammaticalised Aspect	+	+	+
Pv15 (STA) Strong Aspect	+	-	+
Pv16 (ACV) Aspect-checking V	-	-	-
Pv17 (ASV) Aspect spread to V	+	+	+

	FRENCH	ENGLISH	ITALIAN
Pv18 (GRM) Grammaticalised Mood	+	+	+
Pv19 (STM) Strong Mood	+	$0-$	-
Pv20 (MCV) Mood-checking V	+	-	+
Pv21 (MSV) Mood spread to V	-	-	-

CHECKING vs SPREAD:

- Checking is + if tense/aspect/mood are sometimes marked only on V and sometimes on an auxiliary or particle.

Tense Marking:

IT: I ragazzi parlavano
FR: Le garçons parlaient
IT: I ragazzi avevano parlato FR: Le garçons avaient parlé

IT: I ragazzi hanno parlato FR: Les garçons ont parlé
\Rightarrow Spread is + if marking at once of tense/aspect/mood on both lexical V and additionally on a higher auxiliary/particle/clitic.
G. Cinque (1999)

STRONG [Mood [Tense [Aspect]]]

- If verb-movement to Mood ${ }^{\circ}$ is allowed in a language, verbmovement to Tense $^{\circ}$ and Aspect ${ }^{\circ}$ is entailed.
- If verb-movement to Tense ${ }^{\circ}$ is allowed in a language, verbmovement to Aspect ${ }^{\circ}$ is entailed.
- If verb-movement to Aspect ${ }^{\circ}$ is not allowed in a language, any other movement to a higher functional projections are disallowed.
- $\mathrm{P}_{\mathrm{V}} 11$ (Strong Tense): Does the lexical verb move to T ?
- Overt movement of lexical verbs to T in finite declarative main clauses.
- V precedes adverbs like already and potentially some types of negation and floated quantifiers, and internal arguments (in particular direct objects) follow these.
" V is likely to show relatively "rich" person/number inflection.
- This movement may be blocked by auxiliaries, where these are not generally present.
" Assume that Strong Mood ($\mathrm{P}_{\mathrm{V}} 19$) entails Strong Tense (Head Movement Constraint).
[subjp Tu [Tp travailles [TAntP déjà]]]
[subjp Tu [Tp lavori [TAntp di già]]]
[subjp You ... [TAntP already [vpwork]]]
* Tu déjà travailles
?? Tu di già lavori
* You work already
- $\mathrm{P}_{\mathrm{v}} 7$ (Strong Aspect): Does the lexical verb move to Aspect?
- Verb precedes adverbs like completely and well.
" If no additional movement to Tense, verb follows adverbs like already and always.
- Assume that Strong Tense ($\mathrm{P}_{\mathrm{V}} 11$) and Strong Mood ($\mathrm{P}_{\mathrm{V}} 19$) entail Strong Aspect (Head Movement Constraint).
[subjp Je [Aspp crois [AspComplP complètement [pp à ta sœur]]]]
[subjp lo [Aspp credo [AspComplp completamente [pp a tua sorella]]]] [subjp I [AspCompp completely [vp believe [pp in your sister]]]]
* Je complètement crois à ta sœur
* lo completamente credo a tua sorella
* I believe completely in your sister
- P_{v} 19(Strong Mood): Does the lexical verb move to a high Mood head?
- Verb precedes adverbs like probably
[subjp Elle [Moood mange [Modepp probablement ... [ppà la maison]]]] [subjp Lei [MooEpp probabilmente [Tp mangia [pp a casa]
[subji She [ModEpp probably [vp eats [pp at home]]]]
* Elle probablement manges à la maison
?? Lei mangia probabilmente a casa
* She eats probably at home
- It is + in French, indeed the verb always precedes adverbs like «completement»
- It is + in Italian, indeed the verb always precedes adverbs like «completamente»
* It is - in English, indeed the verb always follows adverbs like «completely»
- $P_{\mathrm{V}} 19$ (Strong Mood):
- It is + in French, indeed verb always precedes adverbs like «probablement».
- It is - in Italian, indeed the verb always folliows adverbs like «probabilmente».
- It is 0 - in English as verb-movement to Aspect.P, located in a lower position of the IP, is disallowed.
- Pv11 (Strong Tense)
- It is $0+$ as verb movement to Mood.P, located in a higher position, of the IP is allowed
- It is + in Italian, indeed the verb always precedes adverbs like «di già»
- It is 0 - in English as verb-movement to Aspect.P, located in a lower position of the IP, is disallowed.

		FRENCH	ENGLISH	ITALIAN
Pv26 (FPT) Φ-feature spread to participles	Do participles (if present) ever inflect for number and/or gender?	+	-	+
Pv27 (FPP) Φ-feature spread restricted to passive participles	Is participle agreement restricted to the passive construction?	-	$0-$	-
Pv28 (PAI) Aux-controlled agreement on participles	Does the nature of agreement on participles depend on the nature or form of the auxiliary?	+	$0-$	+

- $P_{\mathrm{v}} 26 / P_{\mathrm{v}} 27:$

IT: Le ragazze sono partite-f.pl.
FR: Les filles sont parties-_f.pl.
EN: The girls have left unmarked

IT: Le ragazze sono partite-f.pl. Le ragazze hanno parlato-unmarked

FR: Les filles sont parties-f.pl. Les filles ont parlé-unmarked

EN: The girls have left-unmarked
The girls have spoken-unmarked

		FRENCH	ENGLISH	ITALIAN
Pv30 (SFR) Free Subject	Does the language allow "free subjects"?	+	-	+
Pv31 (VOS) VP over subject	Is the subject generally expressed to the right of the core predicate?	-	-	-

- As for $P_{\mathrm{v}} 30$, the respective values for English and Italian are more straightforward than the value for French:
- The positive value in French is due to Stylistic-Inversion structures:

Quand partita ton ami?
When will leave your friend?

- In Italian the inverted subject is also used in declarative clauses, despite being endowed with some specific informational structure features (Belletti 1999)

Partirà domani il mio amico
Will leave tomorrow the my friend.

As for $\mathrm{P}_{\mathrm{V}} 31$ a positive setting of this parameter would give rise to surface VOS or OVS orders. Although VOS order occurs in Italian and French in some specific structures, this is not the most basic order. This accounts for the negative value of this parameter in all th three languages at issue.

Standard Italian and Florentine variety

- Tuscan Italian is traditionally divided into four main sub-areas (Ledgeway 2016)
a) Florentine
b) Western Tuscan (Elbano-Pisan-Lucchese-Pistoiese)
c) Eastern Tuscan (Aretino - Chainaiolo)
d) Southern Tuscan (Senese - Grossetano)
- They represent a distinct linguistic area generally considered to be structurally more conservative than other Italo-Romance areas. (Ledgeway 2016)
- Application of the PCM to the Florentine variety.
- The expectation is that the majority of parameters values will coincide with St. Italian.
- Nonetheless, the fact that some parametric differences do exist gives a chance to extent the list of parameters expressed by the PCM.

		ITALIAN	FLORENTINE
Pv41 (SCL) Subject clitic distinct from agreement	Does the language make use of both subject clitics and subject agreement, occurring together?	-	+

1sg	(lo) (e) parlo
2sg	(Te) tu parli
3sg. masc	(Lui) e parla
3sg. fem	(Lei) la parla
1pl	(Noi) si parla
2pl	(Voi) vu parlate
3pl. masc	(Loro) e parlano
3pl. fę	(Loro) le parlano
Neuter	gli

- The term (Subject) Clitic is used to refer to a relatively reduced (subject) morpheme which depends phonologically and/or syntactically on some other linguistic unit [...], often analyzed as syntactic heads [...] and which pronominalizes a subject. (Poletto and Tortora 2000)
- Not a clear-cut way to determine the status of subject clitics in Florentine.
- From Poletto's (2000) classification, we can assume that:
[Lop inv.SCLi ${ }^{[c p}$ dei.SCL [Fp T_{i} [IP [neg.p Neg [Numb.p Numb. SCL [Hear.P Person SCL [speak.P VB [TP][]]]]]]]]
- 3sg. fem and 3pl. fem SCL are Number clitics.
- 2sg SCL is a Person clitic
- «E» cannot work as an Invariable clitic as suggested by Poletto (2000)
- Subject clitic and subject agreement occur together with SV order for the majority of persons.
- But it does not occur with the 1 pl person, with all types of verbs

```
(Noi) si vede * (Noi) si vediamo
(We) SCL sees-3sg
(Noi) si telefona
(We) SCL telephones-3sg
(Noi) si parte
(We) SCL leaves-3sg
```

* (Noi) si vediamo (We) SCL see-1pl
* (Noi) si telefoniamo (We) SCL telephone-1pl
* (Noi) si partiamo (We) SCL leave-1pl
- This phenomenon is not restricted to Florentine variety, but is widespread in all Tuscan Italian varieties.
$>$ This phenomenon shows that subject clitic and subject agreement do not co-occur systematically for all persons in the paradigm.
- This phenomenon predicts the possibility of widening the list of parameters related to the VP and TP domain.
- As observed by Brandi and Cordin (1989), subject clitic and subject agreement do not co-occur with VS order, when the subject is a third person singular or plural subject.

Gl'è venuto delle ragazze
SCL is come-unmarked some girls
Gl'è venuto la Maria
SCL is come-unmarked the Mary
Gl'ha telefonato delle ragazze
SCL has phoned some girls

- Moreover, it is not observed an agreeing clitic as in case of SV order, but the neuter SCL.
- This phenomenon is a further suggestion in favour of new sub-parameters within the PCM framework.

However, the lack of subject agreement in VS structures is not systematic in all Florentine varieties spoken in the area around Florence.

- There is research in progress aimed to observe the level of acceptability with respect to different «degrees» of agreement between the subject and the verb in case of post-verbal subject structures.
- Methodology:
- Grammaticality judgment task adopting a 5-point Likert Scale.
- The dependent variable is the choice of the informants.
- The independent variables are two ternary factors, producing 9 conditions.

1. Type of Verb: Transitive - Unergative - Unaccusative
2. Type of Subject: Fem.sg - Fem.pl - Masc.pl

- For each condition either two, or three or four sentence trials have been created expressing different levels of agreements.
- All sentences have been introduced by a context.
- Three types of verbs have been considered as some differences depending on this factor may be found.
- As for the subject types, masculine-singular subject have not been considered as they produce a default value of agreement on both the auxiliary and the clitic. As a matter of fact the status of 3sgmasc SCL has not been well-determined yet, so we can't say that «e» stands for the agreeing SCL.
- Condition A: sentence(s) with a transitive verb and a singular feminine subject.

1. Gl'ha conosciuto la ragazza SCL has known the girl
2. L'ha conosciuto la ragazza SCL has known the girl

Subject agreement on the auxiliary + neuter clitic

Subject agreement on the auxilary + agreeing clitic

- Condition C : sentence(s) with a transitive verb and a plural feminine subject.

1. Gl'ha conosciuto le ragazze

Lack of subject agreement on the auxiliary + neuter clitic
SCL has known the girl
2. Gl'hanno conosciuto le ragazze

SCL have known the girls
3. L'hanno conosciuta le ragazze

SCL has known the girls
Despite providing contexts, (A.2) and (C.3) may be misleading as «l'» is an object clitic in St. Italian.

- Condition F: sentence(s) with unaccusative verb and a plural feminine subject:

1. Gl'è venuto delle ragazze

SCL is come-unmarked some girls
2. Gl'è venute delle ragazze

SCL is come-fem.pl some girls
3. Gli sono venute delle ragazze SCL are come-fem.pl some girls
4. Le sono venute delle ragazze SCL are come-fem.pl some girls

Lack of subject agreement on the auxiliary and of object agreement on the participle + neuter clitic

Object agreement, but lack of subject agreement + neuter clitic

Object and subject agreement + neuter clitic

Object and subject agreement + agreeing clitic
the auxiliary and of
ciple + neuter clitic

- As for the strucutre with unergative verbs, I always considered verbs that do not take an indirect object argument, otherwise the Florentine subject clitic «gli» could be interpreted as an inderect object clitic.
E.g: gl’ha telefonato la ragazza SCL has telephoned the girl
E.g gl'ha partecipato la ragazza

SCL has joined the girl

This sentence may be interpred as «ha telefonato la ragazza a lui» has telephoned the girl to him
This sentence can't be interpreted as «ha partecipato la ragazza a lui»
has joined the girl to him

- Results:

The expected results may reveal different levels of acceptability, strictly correlated to the area where the respective informant come from.

- Discussion:

If different levels of acceptability result, we will further investigate on how this nonsystematicity can be accounted for by the PCM. In particular, whether it is necessary to add some new (sub)-parameters in order to express the relative phenomenon.

If the acceptability judgements confirm the results obtained by Brandi and Cordin, we will definitely have to assume at least one (sub)-parameter expressing the lack of subject agreement in case of post-verbal subject.

4. Conclusion

Conclusion

A synthesis of:

- syntactic theory (what the parameters actually are);
- historical linguistics (computing historical relations);
- psycholinguistics (implications of relations);
- computational methods (phylogenetic treeoptimisation).

Conclusion

We should "take advantage of the combined insights of the two major scientific revolutions in linguistics, those which gave rise respectively to the historicalcomparative paradigm during the XIX century and the 'synchronic-cognitive' paradigm in the XX" (Longobardi 2003:5).

Thank you for listening!

- Contact info:
- Jim jb750@cam.ac.uk
- Elena elena.isolani@student.unisi.it
- Ian igr20@cam.ac.uk

References

- Aikhenvald, A.Y. (2004). Evidentiality. Oxford: Oxford University Press.
- Aikhenvald, A.Y. (2018). Evidentiality: The Framework. In A.Y. Aikhenvald (ed.), The Oxford Handbook of Evidentiality. Oxford: Oxford University Press.
- Baker, M. (1995). The Polysynthesis Parameter. Oxford: Oxford University Press.
- Baker, M. (2008). The Syntax of Agreement and Concord. Cambridge: Cambridge University Press.
$>\quad$ Belletti, A. (2001). "Inversion" as Focalization. In A. Hulk and J. Pollock (eds.), Subject Inversion in Romance and the Theory of Universal Grammar. Oxford University Press.
- Brandi, L. and Cordin, P. (1989). Two Italian Dialects and the Null Subject Parameter. In O. Jaeggli and K. Safir (eds.), The Null Subject Parameter. Dordrecht: Kluwer Academic Publisher.
- Cinque, G. (1999). Adverbs And Functional Heads. New York: Oxford University Press.
- Comrie, B. (1985). Tense. Oxford: Oxford University Press.
- Dryer, M.S. and Haspelmath, M. (2013). World Atlas of Language Structures Online. Jena: Max Planck Institute for the Science of Human History. https://wals.info
- Haspelmath, M., Dryer, M.S., Gil, D. and Comrie, B. (2005). The World Atlas of Language Structures. Oxford: Oxford University Press.
- Holmberg, A. (2000). Derving OV order in Finnish. In: P. Svenonius (ed.), The Derivation of VO and OV. Amsterdam: John Benjamins.
- Huang, C.-T. J. (1982). Logical Relations in Chinese and the Theory of Grammar. PhD thesis, Massachusetts Institute of Technology.
- Ledgeway, A. and Maiden, M. (n.d). The Oxford Guide To The Romance Languages.

L Longobardi, G., Guardiano, C., Silvestri, G., Boattini, A. and Ceolin, A. (2013). Toward a syntactic phylogeny of

- modern Indo-European languages. Journal of Historical Linguistics 3(1), 122-152. Appendix at http://dx.doi.org/10.1075/jhl.3.1.07lon.additional
- Poletto, C. (2000). The Higher Functional Field: Evidence Form Northern Italian Dialects. Oxford University Press.
- Roberts, Ian. (2019). Parameter Hierarchies and Universal Grammar. Oxford: Oxford University Press.
- Schifano, N. (2015). The paradigmatic instantiation of TAM: A novel approach to Romance verb movement. In Aboh, E., Schaeffer, J., and Sleeman, P. (eds), Romance Languages and Linguistic Theory 2013. Amsterdam: John Benjamins.
$\Rightarrow \quad$ Schifano, N. (2018). Verb movement in Romance: A comparative approacj. Oxford: Oxford University Press.
- Sheehan, Michelle. (2017). Lecture series on parameter hierarchies, Universidade Nova de Lisboa, July 2017.

