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Abstract Computational linguists can utilise the insights of neo-emergent lin-
guistic models, an approach to grammar construction that relies heavily on domain-
general inductive biases, to address extant challenges associated with the syntactic
and typological capabilities of state-of-the-art Transformer-based Language Mod-
els (LMs), which underpin systems like Google Translate and ChatGPT. I �rst
o�er a synthesis of the inductive biases of Transformer-based LMs that are remi-
niscent of two properties emphasised in a neo-emergent model called ‘Maximise
Minimal Means’ (MMM) (Biberauer 2011: et seq). Subsequently, I undertake an
analysis of the structural generalisation capabilities of Transformer-based LMs
through a creative probing case-study of subject-verb agreement, which indicates
that these models are unable to perform the crucial NO > ALL > SOME learning
dynamic associated with MMM. In light of these empirical �ndings, I o�er a the-
oretical argument about how MMM and associated Dynamical Systems �eory
(Bosch 2022, 2023) can be viewed as a linguistically motivated goal– as proposed
by Emerson (2020b) – for Transformer LMs. I propose that the predictions of
this neo-emergentist approach translate into theoretical principles and practical
recommendations to improve the syntactic capabilities of Transformer-based LMs
in a typologically-consistent manner. �is perspective can stimulate a productive
interdisciplinary discussion on how linguistic theory can help engineer LMs with
be�er syntactic and typological capabilities.

1 Introduction

Inductive Biases play a fundamental role in grammar construction and underpin
the structural-generalisation capabilities of Language Models in computational lin-
guistics. �e inductive biases of a family of state-of-the-art neural monolingual
and multilingual Transformer Language Models (LMs) (Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, Gomez, Kaiser & Polosukhin 2017) have been widely studied.
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On the Potential for Maximising Minimal Means in Transformer Language Models

Transformers, which underpin Google Translate’s Neural-Machine-Translation sys-
tem and OpenAI’s Chat-GPT, face three challenges: few-shot learning, Transfer
Learning from high-to-low-resource languages, and syntactic generalisation. I argue
that these issues can be approached using neo-emergent accounts of language ac-
quisition and typological variation, where learners recruit domain-general inductive
biases to steer them towards salient properties of the input. Neo-emergentism
redistributes the division-of-labour in grammar construction towards emergent
representations (Wiltschko 2014, 2021, Ramchand & Svenonius 2014).

Speci�cally, I motivate the relevance of one domain-general inductive bias called
Maximise Minimal Means (MMM) (Biberauer 2011, 2015, 2017, 2019a,b, van der Wal
2022, Bosch 2022, 2023). MMM is a two-step meta-learning algorithm for data-
e�cient grammar construction, driving the learner towards emergent syntactic
acquisition in a manner that underpins typological pa�erns. I o�er an exposition to
Transformer-based LMs (which are �rmly rooted in the Firthian adage that ‘you shall
know the meaning of a word by the company that it keeps’ Firth 1957) and MMM. I
propose a previously unnoticed convergence in section 2 in how Transformers and
learners recruit their inductive biases. Emergent syntax is supported by pre-training
dynamics in the Transformer that approximate the dynamics of emergence predicted
in MMM. State-of-the-art work on meta-learning and structural generalisation is
also reminiscent of MMM-approaches.

�is raises two research questions – formulated in section 3. Many computational
linguists are focused on ‘climbing the right hills’ (Bender & Koller 2020) using top-
down (o�en semantico-centric) goals. �is aims to improve structural generalisation
and transparency alongside ‘bo�om-up’ intrinsic evaluation metrics, like perplexity,
to engineer be�er-performing LMs (Manning 2015).

Approaching Transformer-based LMs from a syntactico-centric perspective, I
analyse their emergent capacity to learn English subject-verb agreement using two
‘creative’ probing strategies in section 4. Transformers face a fundamental limitation
in structural-generalisation.

Under the spirit of this ‘top-down’ approach to Language Modelling espoused
by (Emerson 2020b), I propose in section 5 that MMM can guide the improvement
of the structural generalisation capabilities of LMs down a ‘syntatically-motivated
cline’. �is allows us to:

i. Develop linguistically-informed syntactic complexity metrics. I propose one
metric, called sensitivity, which allows us to assess whether pre-training and
transfer learning techniques in Transformers replicate the emergent dynamics
of MMM. I highlight the limitations of commonly-used metrics.

ii. Formalise upper bounds on the potential of existing techniques that augment
the Transformer to distil and transfer syntactic structure across languages. I
present a typological upper-bound on syntactic transfer learning.

iii. Engineer machine learning techniques to replicate the dynamics of syntactic
emergence, as predicted by MMM while retaining the core advantages of the
Transformer architecture in downstream tasks. I suggest that a combination
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of pre-training LMs using child corpora of increasing linguistic complexity and
distilling emergent syntax from contextual embeddings should lead to be�er
structural generalisation. I hope to develop machine learning techniques in
the future to implement this prediction.

�is analysis of emergent syntax is signi�cant as it makes a theoretically-motivated
shi� to view the Transformer more abstractly to ascertain its capability to replicate
the learning dynamics that derive typological distributions– useful in the impetus
towards building ‘fair-NLP’ solutions that can be equitably applied across lan-
guages and cultures. �is ‘MMM-approach’ provides computational linguistics with
a narrow roadmap of exactly how existing machine-learning techniques lead to
human-like syntactic emergence. It prompts the development of be�er techniques
that algorithmically realise and practically-implement theoretical models of what is
possible and probable in natural language in a connectionist architecture.

2 Background and Literature Review

A�er o�ering an exposition of the relevant background on the Transformer architec-
ture and associated model variants and the acquisitional and typological proposals
of the MMM model, I provide a novel characterisation of the convergence of work
on meta-learning in theoretical and computational linguistics.

2.1 Transformer Language Models

Transformer LMs are the contemporary state-of-the-art architecture used in com-
putational linguistics, succeeding previous neural LMs, like LSTMs (Long Short
Term Memory) and RNNs (Recurrent Neural Networks). A Language Model is a
probability distribution over a sequence of words. Classical n-gram LMs have a
training objective of predicting the next word wn+1 in a sequence given n words of
the preceding context, P (wn+1|w1, . . . , wn). Neural network LMs use embeddings,
which are continuous (typically) vector representations of words to make next-word
predictions. Other embedding representations, such as tensors (Coecke, Sadrzadeh
& Clark 2010, Gong, Bhat & Viswanath 2018), can be used.

�e introduction of low-dimensional static embeddings by Mikolov, Chen, Cor-
rado & Dean (2013a), Mikolov, Sutskever, Chen, Corrado & Dean (2013b) led to
the adoption of self-supervised representation learning. �ese do not require any
human-annotated labels and can be created from entirely unlabelled datasets– a
lightweight process for generating text-representations that can be used for down-
stream tasks. Static embeddings are generated by minimising a loss function to
predict a target word wi from a �xed input vocabulary |V | for a given context win-
dow of words preceding and following the target. Reversing this training objective
in a Skip-Gram model allows models to formulate a semantic conceptual space
from which vector additive composition can approximate a natural language phrase
– famously the embedding for QUEEN is the embedding that maximises cosine
similarity with KING−MAN + WOMAN (Mikolov et al. 2013a: 4).
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�e key architectural innovation of Transformers is the use of a�ention. Bah-
danau, Cho & Bengio (2014) introduced an a�ention mechanism, inspired by tech-
niques on ‘learning to align’ in sequence-to-sequence (seq2seq) networks used in
transduction tasks like machine translation where the embedding of an ‘encoded’
source sequence is mapped to a ‘decoded’ output sequence.

Vaswani et al. (2017) introduce the Transformer Language Model, illustrated
in Figure 1, where its encoder (le�), which learns contextualised representations,
and decoder (right) are comprised of six stacked multi-a�ention heads, each fully
connected by a feedforward neural network. �is relates di�erent positions of
a text sequence to compute a representation by ‘a�ending’ to parts of the input
sequence that the model seems relevant to current predictions. Transformers rely
solely on the a�ention mechanism to draw global long-range dependencies between
input and output sequences, eschewing the use of recurrence in previous RNN-
based architectures. Embeddings are also used in Transfer Learning: the linguistic
knowledge encoded in embeddings is transferred to help the Transformer improve
performance on related tasks or languages.

Figure 1 �e Transformer architecture. Figure taken from Vaswani et al. (2017).

58



Salhan

2.1.1 Transformer Self-A�ention Mechanism

Following Hahn (2020: 158-159), I outline how the Transformer self-a�ention mech-
anism works. Given some �nite alphabet |V |, there is an input x = x1, x2, . . . , xn
where all xi ∈ |V | and xn is an end-of-sequence [EOS] symbol. �e Transformer
encodes this input-string into a sequence of input embeddings v1, v2, . . . , vn using
some embedding map V → Rk. �e Transformer has a sequence of positional
embeddings p1, p2, . . . , pi ∈ Rk that are independent of input x. �ey are ei-
ther computed using a pre-de�ned scheme or learnt for each position occurring
in the training data. Using either addition or concatenation, the input and posi-
tional embeddings are combined into the vectors of Layer 0 of the Transformer,
y
(0)
i = f(vi, pi).
Each layer of the Transformer has a set of H a�ention heads which combine

the point-wise ‘activation’ y(k)i for position i at layer k. Vaswani et al. (2017: 5)
implements a�ention scores by linearly transforming y(k)i into �ery and Key
vectors. �e A�ention Score, a(k,h)i,j , combines the activations from previous levels,
a
(k,h)
i,j = fattk,h(yi(k − 1), yj(k − 1)).
�e activation of a head is computed by either a�ending to positions with the

maximum a�ention value in the hard a�ention variant of the Transformer or ap-
plying a so�max function to the scaled dot-product of the query and key vectors, Q
and K in the so� a�ention variant:

(1) Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

�e most ‘con�dent’ a�ention-heads play linguistically-interpretable roles that
clearly focus on ‘syntactically-relevant’ positions in a sentence, a�ending to adjacent
words and tracking syntactic dependencies (Voita, Talbot, Moiseev, Sennrich & Titov
2019).

2.1.2 Transformer-based Language Models

Within the contemporary ecology of state-of-the-art Language Models, the ‘vanilla’
Transformer architecture has been adapted using di�erent pre-training objectives
and augmented using sub-word tokenisation; increasing model size and extend-
ing the Transformer to multilingual and multimodal se�ings. I introduce the
Transformer-based models that are used in section 4.

Models, like Bidirectional Encoder Representations for Transformers (BERT), use
a masked language modelling (MLM) training objective, where �nal hidden vectors
are randomly masked following a procedure inspired by cloze-style tasks used in
psycholinguistics. Devlin, Chang, Lee & Toutanova (2019), building on ELMO (Pe-
ters, Neumann, Iyyer, Gardner, Clark, Lee & Ze�lemoyer 2018), develop BERT’s
text representations used in downstream tasks by extracting context-sensitive word
embeddings from bidirectional le�-to-right and right-to-le� language models. �e
BERT architecture is fed input sentences, which are encoded using pre- trained
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token embeddings trained using MLM and concatenated with positional embeddings
and [SEP] tokens that associate tokens of the same sentence. �e MLM objective
enables deep bidirectional pre-training in BERT, by masking subword tokens used
as input vocabulary at random and then training BERT to predict these tokens.
BERT also uses a next-sentence-prediction training objective to jointly pre-train
text-pair representations. However, RoBERTa (Liu, O�, Goyal, Du, Joshi, Chen, Levy,
Lewis, Ze�lemoyer & Stoyanov 2019) is a variant of the BERT model, trained on a
much larger dataset with a more e�ective training procedure. RoBERTa removes
the next-sentence-prediction objective, which was found to be less important for
model performance. It uses a dynamic masking technique during training, which
helps the model learn more robust and generalisable representations of words.
Transformer-based Language Models that use a MLM training objective di�er vari-
ously: one important dimension is model size, where BERTBASE has 12 layers,
while BERTLARGE has 24 layers.

Figure 2 �e BERT architecture. Figure from Devlin et al. (2019).

ELECTRA (Clark, Luong, Le & Manning 2020) uses a more sample-e�cient pre-
training objective called replaced token detection, which corrupts a percentage of
the input by replacing target tokens with plausible alternatives that are sampled
from a small generator network. �e objective of a discriminator model is to predict
whether each token in the input is corrupted or not. As the task is de�ned over the
entire input rather than a percentage of masked tokens, Clark et al. (2020) �nd that
this approach can ‘substantially outperform the ones learned by BERT given the
same model size, data, and compute’.

Large gains in Natural Language Understanding tasks have been made using
Generative Pre-Training of Transformer LM on a diverse corpus of unlabeled text,
followed by supervised ‘discriminative’ �ne-tuning on speci�c downstream tasks.
�e GPT family (Radford, Narasimhan, Salimans, Sutskever et al. 2018) uses a
standard ‘autoregressive’ language modelling objective for next-word prediction to
maximise the log-likelihood of P (wi|wi−k, . . . , wi−1,Θ)where k is the size of the
context window for the unsupervised pre-training of the ‘vanilla’ Transformer
decoder (using unidirectional le�-to-right self-a�ention). �e decoder produces
an output distribution over the target tokens. �e GPT-family are Large LMs,
with state-of-the-art variants seeing a massive explosion in training corpus size
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and the number of con�gurational model ‘parameters’ which estimate statistical
pa�erns– GPT-2 and GPT-3 (Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal,
Neelakantan, Shyam, Sastry, Askell et al. 2020) have 1.5 and 175 billion parameters
respectively. GPT-3 uses the same architecture as GPT-2, with the exception that it
uses alternating dense and locally banded sparse a�ention pa�erns in the layers
of the transformer, similar to the Sparse Transformer. Brown et al. (2020) �nd that
scaling up the size of LMs can lead to much be�er ‘on-the-�y’ few-shot learning
performance in task-agnostic se�ings.

LMs also di�er in their subword tokenisation algorithms: BERT uses WordPiece
tokens (Schuster & Nakajima 2012), while GPT-2 and GPT-3 use Byte-Pair Encoding
(Sennrich, Haddow & Birch 2016).

Transformer-XL (Dai, Yang, Yang, Carbonell, Le & Salakhutdinov 2019) is an au-
toregressive English LM whose training objective is similar conceptually to GPT-2’s;
but it has a much longer e�ective context to enable learning longer-term depen-
dencies using a segment-level recurrence scheme that allows the Transformer to
fully-exploit its optimisation advantage on the ‘vanishing gradients’ problem– ef-
fectively preventing model weights to be updated during pre-training. XLNet (Yang,
Dai, Yang, Carbonell, Salakhutdinov & Le 2019) is an English LM which proceeds
through various word order permutations of the input tokens during training,
and which uses a distinct a�ention masking mechanism as well; during testing, it
proceeds autoregressively through the input similar to the other two models.

Recent research has focussed on the development ofmultilingual sentence encoders,
like multilingual BERT (mBERT), which are trained in as many as 104 languages to
jointly train a shared embedding representation space in a multilingual encoder.
�ese enable immediate (or zero-shot) cross-lingual transfer (see section 5.3).

�ere are also various techniques that are aimed to improve the few-shot learning
potential of Transformer-based models in �ne-tuning, such as Pa�ern-Exploiting
Training (Schick & Schütze 2021): a semi-supervised training procedure that refor-
mulates input into cloze-style templates to enable pre-trained Transformer-based
LMs to predict continuations to solve downstream tasks like sentiment analysis.
�e Transformer architecture has been integrated into multimodal architectures
in models like CLIP (Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell,
Mishkin, Clark et al. 2021), which integrate image information with unimodal
text-representations from GPT-2.

2.2 Maximise Minimal Means

Neo-emergent models redistribute the division of labour between the �ree Factor
Model of Chomsky (2005). Modifying the ontological apparatus of the generative
enterprise, they endow the Language Faculty with universal symbolic operations
and components that are conceptually-necessary, but still maintain symbolic com-
putation unlike usage-based approaches and Construction Grammar. In addition
to Factor 1– a maximally-poor UG with operations like Merge and Agree relying
on a set of formal features, FF– and Factor 2 (primary linguistic data provided to
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the learner), MMM is a domain-general third-factor principle recruited for language-

speci�c computation.

2.2.1 MMM as a �ird Factor

Neo-emergent systems are driven to ‘maximise minimal means’ as follows. �e
initial state of a system has NO postulated representations, however, learners ex-
hibit sensitivity to salient contrasts. �is triggers the postulation of a feature in a
maximally-wide domain (ALL), before restricting its application to a more context-
sensitive domain upon receiving further input (SOME). Following cyclic NO >
ALL > SOME pa�erns of over-extension and retraction leads to an expectation
that later knowledge will ‘piggyback’ on and be shaped by pre-existing knowledge.
�e MMM inductive bias drives learners to follow an acquisitional-pathway that
yields so-called ‘Goldilocks E�ects’, where learners systematically a�end to salient
information in the input to avoid over��ing; combat noise; and ignore some of
the inherent complexity in the environment. MMM+Goldilocks yields a strategy
choice that is adaptive and ‘good-enough’ based on the problem’s characteristics
(Biberauer & Bosch 2021).

2.2.2 MMM in the Language Faculty

While Chomsky (2000) assumes that grammars make a ‘one-time selection’ of formal
features, FF, used contrastively in narrow syntax in the Language Faculty, MMM
make a signi�cant departing assumption that features are only acquired by the
learner if the PLD necessitates so. �e �rst condition of the MMM model is that
learners exhibit sensitivity to many-to-one/one-to-many form-meaning mappings
(Systematic Departures from Saussurean Arbitrariness) (Biberauer 2019b). Subject-
verb agreement is an example of a many-to-one departure from Saussurean arbitrari-
ness, which we discuss in section 4. Agreement is a conventionalised grammatically-
regulated dependency marked on NPsubject and V. When a learner encounters
subject-verb agreement, they are forced to postulate φ-(person/number/gender)
FFs used contrastively in steady-state agreement computation. Emergent syntax is
triggered by the MMM inductive-bias towards salient cues of ‘higher degrees’ of
grammatically-regulated arbitrariness in the input.

Once FFs are postulated, MMM guides the learner to follow a domain-general
NO > ALL > SOME geometry, which is manifested as a maximally-wide extension
of FF to ‘relevant’ syntactic heads (as speci�ed by universal computation in narrow
syntax), before retracting FF to more context-speci�c head distribution to account for
more �ne-grained distributional pa�erns in PLD. NO > ALL > SOME underpin the
distributional pa�erns of syntactic typology as the locus of Parametric variation is
a�ributable to di�erences in FF-speci�cations associated with (functional) syntactic
heads (Baker 2008). �e MMM contextual restriction is illustrated in Figure 3.
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Is [F1] present?

NO

ALL
Extend [F1] to

all relevant heads

SOME
Learner postulates new [F2]

Yes

No: Which subset of heads?

Figure 3 Departures from Saussurean Arbitrariness trigger MMM contextual restrictions.

Is ˆ present?

NO

Harmonically
head-initial

YES: present on all heads? (ALL)

YES

Harmonically
head-�nal

NO: present on all [±V] heads? (SOME)

YES

Head-�nal in
clausal/nominal domain

No: present on subset of [±V] heads? (SOME)

…

Figure 4 Parameter Hierarchy for Word Order Typology (Roberts 2012).
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Concretely, word order typology ‘falls-out’ by initially postulating a feature-
diacritic ∧ , triggered by very-early prosodic-bootstrapping. �is derives VO and
OV harmonic word-order (NO > ALL). Subsequent disharmonic orders are derived
by restricting the distribution of ∧ to a subset of heads based on further input
(SOME). �e MMM-dynamic derives emergent Parameter Hierarchies, a device that
syntacticians have proposed to account for typological variation (van der Wal 2022:
i.a.).

2.3 Meta-Learning and Inductive Biases

I review the predictions of Dynamical Systems �eory (Bosch 2022, 2023) that
extends MMM and propose the relevance of a complexity metric called sensitivity
for emergent syntax in Transformers. I provide a novel synthesis of inductive biases
and meta-learning in these two approaches. �is isolates two shared inductive
biases that both Transformers and MMM-learners recruit in emergent syntax.

2.3.1 Dynamical Systems �eory

Neo-emergent Dynamical Systems �eory (DST) reconciles how learners postulate
emergent symbolic-representations despite external environmental perturbations
caused by the dynamics of areal/contact-induced/diachronic change. �e Lan-
guage Faculty, schematised in Figure 5, has an acquisitional dynamical system
< T,X,Φ >, composed of a set of times T , a state space X and a set of transition
functions Φ : X × T → T that interacts with a system of symbolic computa-
tion, alongside an intermediate Conceptual Space where (semantic) concepts are
represented as convex sets.

Figure 5 �e Language Faculty as conceived in Dynamical Systems �eory. Figure from
Bosch (2022: 17).
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Universal Grammar speci�es the �ow (rather than the hard-wired substance)
of emergent representations in the acquisitional dynamical system. MMM and
Goldilocks E�ects inductive biases are jointly-encoded as ‘a�ractors’ in the dy-
namical system, steering learners to follow MMM dynamics as a way to adaptively
mutate the grammar to handle noisy perturbations in the input. �e acquisitional
dynamical system uses contrastive cues as a ‘control parameter’ to drive the succes-
sive re-organisation of the system especially to early input in the initial stages of
grammar construction.

DST has two relevant predictions: (1) the inductive biases underpinning emergent
syntax can be analysed using dynamical systems and (2) typological variation ‘falls-
out’ from the greater initial learning potential of the dynamical system to early
input. DST addresses three extant problems also addressed in work that augments
the performance of the ‘vanilla’ Transformer architecture to support the emergence
of contextual embeddings in a typologically-consistent manner.

i. Emergent Neuro-Symbolic Representation: DST proposes that learners dis-
til emergent symbolic representations from continuous learning dynamics.
Motivated by the limitations of LMs to model truth functions, semantic com-
positionality and quanti�er scope, Functional Distributional Semantics aug-
mented continuous vector-based embeddings with compositional semantic
computation (Emerson 2018, 2020a). Both converge on neuro-symbolic repre-
sentations.

ii. (Domain-General) Meta-Learning: MMM is a domain-general/‘third-factor’
meta-learning (or learning-how-to-learn) procedure. �e Transformer is a
domain-general neural architecture – applied in non-language-speci�c con-
texts, like computer vision (Dosovitskiy, Beyer, Kolesnikov, Weissenborn,
Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly et al. 2020). Meta-
learning algorithms that augment the Transformer architecture aim to im-
prove the compositional generalisation of Transformer LMs (Conklin, Wang,
Smith & Titov 2021) and in cross-lingual transfer (Ponti 2021). Both recruit
domain-general meta-learning procedure for language-speci�c computation

iii. Typology: �e MMM meta-learning algorithm steers the pa�erns of emergence
in the dynamical system that underpins typological distributions. �is has po-
tentially relevant theoretical consequences for understanding the theoretical
limits of Transfer-based approaches.

I now motivate a complexity metric called sensitivity which elucidates how
Transformers recruit their domain-general inductive biases to exhibit two DST
properties: (1) sensitivity to initial conditions and (2) emergent complexity-driven
curriculum learning.
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2.3.2 Sensitivity and Self-A�ention

Sensitivity is a complexity metric that measures how likely a function value changes
based on the number of bits �ipped in the input.1 Functions with low sensitivity
have a low Kolgomorov complexity (the information in x is de�ned by the length
of the shortest program encoded in binary bits that outputs the string x)– they
depend on fewer bits and are determined by a smaller number of input coordinates.
Functions of higher sensitivity are more complex since the function value can be
changed by any subset of bits (Novak, Bahri, Abola�a, Pennington & Sohl-Dickstein
2018).

�e Transformer Self-A�ention mechanism can be modelled as a dynamical
system of interacting particles. �e numerical solution of the Ordinary Di�erential
Equation that models the Transformer at a time t is related to the set of input
embeddings fed into the Transformer and the Key/�ery vectors in the multi-head
self-a�ention mechanism. 2

Inoue, Ohara, Kuniyoshi & Nakajima (2022) further illustrate that the pre-training
procedures used in a smaller version of BERT, ALBERT (Lan, Chen, Goodman,
Gimpel, Sharma & Soricut 2019), can be viewed as a dynamic trajectory along
a discrete-time dynamical system from its initial state as a randomly initialised
network. When input is provided to ALBERT, the encoder is in a transient state until
it reaches a certain state. �ey characterised smooth and stable short-term training,
where embeddings began to synchronise due to the in�uence of the self-a�ention
mechanism, indicating natural language understanding tasks can be handled by a
discrete dynamical system.

2.3.3 How does Sensitivity allow us to understand emergent MMM-like properties in

Transformers?

We now apply the de�nition of sensitivity and the Dynamical Systems interpretation
of the self-a�ention mechanism to highlight two inductive biases of the Transformer.

�e Transformer Self-A�ention mechanism exhibits a simplicity bias that is
reminiscent of MMM-like inductive bias a�ributed to the acquisitional dynamical
system in DST. Transformers exhibit a simplicity bias towards sparse boolean functions

with low sensitivity. In these conditions, they exhibit the capability to generalise
near perfectly even in the presence of noisy labels, unlike LSTMs which over�t and
achieve poorer generalisation accuracy (Bha�amishra, Patel, Kanade & Blunsom
2022). �e existence of a simplicity bias in Transformers is signi�cant from an
MMM-perspective, which also assumes that human learners have a bias towards
simpler inputs which drive the �ow of emergent syntax. Edelman, Goel, Kakade
& Zhang (2022) implicate sparse features in the emergence of representations that

are reminiscent of the hand-cra�ed syntactic features.3 A single self-a�ention head
1 See Kalemaj (2020) for a formal de�nition.
2 See Du�a, Gautam, Chakrabarti & Chakraborty (2021: 3-4) for a proof of this result.
3 Edelman et al. (2022: 7) proves that the self-a�ention mechanism can represent all sparse Boolean

functions for any size-k subset, which allows the Transformer to learn sparse interactions sample-
e�ciently
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in Transformer networks creates sparse variables of the input sequence context,
with sample complexity scaling only logarithmically with the context length T .
As predicted by DST, the emergent structural generalisation capabilities of the
Transformer architecture are highly sensitive to the initial conditions of the training
data.

MMM-learners tend to pick analyses with the shortest description length of the
linguistic input. �e application of curriculum learning to Transformers allows
models to selectively a�end to information at varying levels of granularity– al-
though, unlike MMM-based curricula, these typically take the form of ordering a
sequence of tasks or sampling a dataset according to a pre-speci�ed order (Surkov,
Mosin & Yamshchikov 2022).

However, Transformers implicitly proceed in an emergent curriculum from low-
to-high sensitivity. Syntactic Probing investigates representations associated with
syntactic dependencies by developing small supervised models called probes that
map from model representations to some phenomenon that those representations
are expected to encode. �e Structural Probe decodes dependency parse trees from
the self-a�ention mechanism by �nding a linear transformation under which two
words’ distance in their dependency parse is approximated by the squared distance
between their model representation vectors under a linear transformation that
de�nes a syntactic subspace (Hewi� & Manning 2019). �is is done by recovering
a unidirectional graph that maps contextualised embeddings into the syntactic
subspace with a distance measure optimised to the number of edge spans between
two words in a dependency graph (Hewi� & Manning 2019: 4130). It encodes which
word is governed by other words and each word’s proximity to every other word in
the syntax tree.

DEPPROBE is an extension of the Structural Probe that extracts fully-labelled,
directed dependency trees from the Transformer self-a�ention mechanism’ (Müller-
Eberstein, van der Goot & Plank 2022a). By combining the distance measure of the
Structural Probe with a relational probe that learns the probability of a word being
classi�ed into a dependency relation, the dependency graph is rooted by the word
that has the highest probability of being a root, and the iterates across all words
until they are covered in an edge drawn from its head based on the distance measure
of the Structural Probe. �is creates a linear probe that extracts a fully labelled and
directed dependency parse from contextualised embeddings.”

Probing has established that full trees can be decoded above baseline accuracy
from single a�ention heads, and that individual relations are o�en tracked by the
same heads across languages (Ravishankar, Kulmizev, Abdou, Søgaard & Nivre 2021,
Limisiewicz, Mareček & Rosa 2020, Chi, Hewi� & Manning 2020), as illustrated in
Figure 6.

Transformers �lter linguistic information along di�erent linguistic timescales,
such as words, phrases and sentences, and associate di�erent linguistic tasks with
these bandwidths. Building on Tamkin, Jurafsky & Goodman (2020), Müller-
Eberstein, van der Goot & Plank (2022b) develop a technique called Spectral Probing,
which uncovers emergent curricula in Transformers. A�er decomposing a sequence
of embeddings into a composite frequency wave using Discrete Cosine Transform,
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Figure 6 BERT A�ention Heads are specialised to di�erent dependency relations. Figure
from Clark et al. (2019: 280).

the Spectral Probe �lters a sequence of embeddings into continuous frequency
‘bandwidths’.
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Word-level tasks, like POS-tagging (POS) and phrase-level tasks like Dependency
Parsing (Dep) are associated with di�erent spectral �lters across languages. Figure 7
shows the Spectral Pro�les of mBERT embeddings in English/German/Spanish/
French/ Japanese/ Chinese in POS and Dep have di�erent upper bounds. Transform-
ers, across languages, across languages, appear to associate linguistic information
that appears in the input at di�erent timescales according to these linguistically-
sensitive spectral bands.

Figure 7 Spectral Filters of mBERT embeddings have di�erent upper bounds in
word/phrase-level tasks. Figure from Müller-Eberstein et al. (2022b: 7732).

�e chaotic trajectories of the self-a�ention mechanism underpin the observed
separation of di�erent NLP tasks in Spectral Bandwidths. Word-level tasks disso-
ciated by the lower spectral �lter are lower sensitivity tasks, while phrase-level
tasks are typically higher sensitivity. Hahn, Jurafsky & Futrell (2021b) introduce
the notion of Block Sensitivity that measures how many disjoint subsequences can
be changed individually to �ip the label assigned to a phrase. Tasks at a higher
sensitivity, like assigning a Universal Dependencies label, are at a higher spectral
�lter than lower sensitivity tasks, like identifying the relative position of a head in
a parse.

Overall, Transformers share (1) a simplicity bias and (2) emergent complexity-
driven curicula (reminiscent of Goldilocks e�ects) with MMM. As MMM is a property
of the acquisitional dynamical system and Transformers simulate dynamical systems,
this leads to the Sensitivity Conjecture as shown in (1).

(1) Sensitivity Conjecture: �e inductive bias of the Transformer-based LM to-

wards simple functions and sparse variables underpins emergent syntax that

approximate the behaviour of the acquisitional dynamical system.
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�is preliminary synthesis of pre-existing empirical results through the theoret-
ical lens of sensitivity as a complexity metric provides evidence for a previously
unnoted convergence between MMM (as a property of the acquisitional dynamical
system) and the dynamics of emergence in Transformers suggests that there are
deeper formal a�nities between the mechanisms developed by purely bo�om-up
considerations in computational linguistics and neo-emergent models of linguistic
theory. �is points to the productivity of postulating that neo-emergent models
of grammar construction are a plausible top-down goal for improving language
modelling, and motivates deeper theoretical questions about the extent to which
linguistic structure can be modelled using Transformer-based architecture.

3 Research�estions

Given the convergence of research in computational and theoretical linguistics
outlined in section 2.3, we can formulate two research questions to apply the
theoretical predictions of MMM to Transformer LMs.

i. To what extent are Transformer Language Models sensitive to departures
from Saussurean arbitrariness and contextual restrictions?

ii. How can MMM be used as a heuristic to improve the learnability of contextual
restrictions in a typologically-consistent manner?

In accordance with (i), we assess in section 4 the fragility of subject-verb agree-
ment computation in Transformer-based LMs using two creative probing strategies–
causal mediation analysis and grammatical error detection. According to the two-
step MMM meta-learning procedure, Transformers should be sensitive to agreement
as cue for structural generalisation (it is a Departure from Saussurean Arbitrariness).
Once triggered, the Transformer should recruit their inductive biases to sensitivity
to learn the target contextual restriction according to a NO > ALL > SOME geom-
etry– following a learning dynamic of overextension and retraction to reach the
target distribution. We investigate the structural generalisation by measuring the
extent to which agreement computation in di�erent Transformer-based LMs can be
modulated by intervening ‘agreement a�ractors’.

To the extent that the emergent syntactic behaviour of Transformers follows the
Sensitivity Conjecture, MMM is a plausible syntactico-centric top-down goal to
improve the structural generalisation capabilities of Transformers in a typologically-
consistent manner (section 5.1), thereby adressing (ii). In section 5.2, we begin with
a theoretically-motivated discussion about the bene�ts of sensitivity as a syntactic
complexity metric and the creative probing strategies to ascertain the structural gen-
eralisation capabilities (i.e their emergent capacity to formulate NO> ALL> SOME
generalisations) in a typologically-consistent manner, as predicted by the MMM
model. We utilise recent theories on neo-emergent category induction to propose a
linguistically-motivated solution to help improve the structural generalisation of
LMs to approximate MMM dynamics in Transformer-based LMs.
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In section 5.3, in light of syntactic typological variation ‘falling-out’ from NO
> ALL > SOME emergent dynamics, an MMM-perspective places a theoretical
upper-bound on the e�ectiveness of state-of-the-art techniques for cross-lingual
syntactic transfer. �is motivates the dissociation of semantic and syntactic transfer
learning and developing �ne-grained typological evaluation datasets. I highlight
how existing meta-learning techniques can be repurposed to improve structural
generalisation in a typologically-consistent manner according to MMM. Augmenting
the structural generalisation capacity of the Transformer in the manner may also
address associated with grounding in multimodal Transformer-based architectures.

4 Case Study: Structural Generalisation in Transformer-based LMs

In this case-study, I conduct a more �ne-grained analysis of the emergent subject-
verb agreement capabilities of Transformer-based LMs using grammatical error
detection (GED) as a diagnostic probe to assess the structural generalisation capa-
bilities of Transformer-based LMs.4

4.1 Motivation: Sensitivity to Agreement Computation

Transformers recruit two MMM-based properties (Simplicity Bias and Goldilocks
E�ects) to exhibit the capability to distil sparse features that encode emergent
syntax, like [SG] and [PL] number in subject-verb agreement. Following Finlayson,
Mueller, Gehrmann, Shieber, Linzen & Belinkov (2021), it is possible to distil the
mechanisms of agreement computation in Transformers using a technique called
causal mediation analysis. �is implicates the components of the Transformer
that are involved in agreement computation by viewing each model component

(each sentence-length embedding z in the Transformer-based LM) as a ‘mediator’.
Finlayson et al. measure the contribution of each embedding mediator in agreement
computation by performing ‘interventions’ on input sentences. Finlayson et al.
perform causal mediation analysis for di�erent model sizes in Table 1.

An intervention on agreement computation is performed by switching [SG] to
[PL] marking, or vice-versa, and measuring the relative change of the probability of
CORRECT : INCORRECT agreement marking on the verb for each sentence-length
embedding ‘component’ in the Transformer. �e Total E�ect of an intervention is
measured by changing the grammatical number of the main subject (e.g author→
authors) and measuring the ratio of probabilities of the originally incorrect verb
form, as in (2)

4 All code and datasets used in this section can be found in the Appendix.
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Size Layers Embeddings Size Headings

Distil 6 768 12
Small 12 768 12
Medium 24 1024 16
Large 36 1280 20
XL 48 1600 25

Table 1 Model Size Variants of GPT-2 used by Finlayson et al. (2021).

Given a subject prompt u and a verb v, the total e�ect TE:

(2)
y(usg|v) = P (

incorrect number
correct number ) < 1

if a Transformer-based LM predicts the correct agreement or > 1 if incorrect (Figure 8)

Figure 8 Total E�ect of Causal Mediation Analysis. Figure from Finlayson et al. (2021:
1831).

�is is measured by se�ing an individual embedding to the value that it would
have taken if the grammatical number of a sentence was changed (although there is
no swap-number intervention). �is is illustrated in Figure 9.

Applying TE to the GPT-2 family, we can measure the contribution of di�erent
layers of the Transformer in agreement by measuring the indirect total e�ect (Fig-
ure 10) of swapping the number of the subject on the in�ectional preferences of
di�erent model components.
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Figure 9 Indirect Total Mediation E�ect. Figure from Finlayson et al. (2021: 1833).

Figure 10 Indirect Total E�ects across model sizes show that agreement computation is
not modulated by model size. Figure from Finlayson et al. (2021: 1834).

�ere are two relevant results from the causal mediation analysis that motivate
the probing study. First, the indirect e�ects suggest that di�erences in model size
in the GPT-family do not lead to substantially di�erent agreement mechanisms.
Figure 9 shows that smaller models, like DistilGPT-2, have more syntactic knowledge
concentrated in fewer embeddings that have stronger in�ectional preferences in
agreement computation. �e �gure shows the top 5% of neurons in each layer of
the GPT-2 sizes in Table 1 in simple subject-verb agreement Indirect TE e�ects in
larger models, like GPT-2 XL, are more distributed across the layers. �is suggests
that Transformer-based LMs exhibit sensitivity to Saussurean arbitrariness, like
subject-verb agreement.
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Agreement TEs are far higher than the TEs below 250 reported for gender bias
in Vig, Gehrmann, Belinkov, Qian, Nevo, Singer & Shieber (2020), indicating that
Transformer-based LMs show emergent syntax. Finlayson et al. (2021) �nd that
Transformers encode morphologically-realised [PL] -s as ‘defaults’ in GPT-2 and
seem to be easier targets for agreement computation.

Following the Sensitivity Conjecture, Transformers do seem to recruit their
MMM-like domain-general inductive biases towards learning sparse number features
utilised in agreement. �e causal mediation analysis suggests that emergent syntax
is not modulated by model size. �e insight that size does not ma�er for emergent
syntax is signi�cant, particularly when Large Transformer-based LMs like GPT-3
have been motivated by a�empts to improve few-shot learning in downstream
tasks (Brown et al. 2020). �e syntactic generalisation capabilities of Transformer-
based LMs seem to be at least partially dissociated from the increasing statistical
correlations picked up in larger LMs and instead derive from the application of
domain-general inductive biases in the self-a�ention mechanism.

Secondly, Finlayson et al. �nd that autoregressive LMs GPT-2 and Transformer XL
show a divergence between local agreement (e.g. simple agreement/within a relative
clause) and longer distance agreement across intervening PPs in Transformer XL
Figure 11 and GPT-2 in Figure 12.

Figure 11 Transformer-XL shows a dissociation between local (shown in red/yellow) and
non-local (shown in purple/green) agreement. Figure from Finlayson et al.
(2021: 1834-1835).
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Figure 12 GPT-2 Medium shows a dissociation between local (shown in red/yellow) and
non-local (shown in purple/green) agreement. Figure from Finlayson et al.
(2021: 1834-1835).

�is bipartite behaviour is not observed in XLNet in Figure 13, where the indirect
e�ect contour is similar across local and non-local agreement. All three �gures
show the natural indirect e�ects of the top 5% of sentence embeddings in each layer.

Figure 13 XLNet does not show a dissociation between local (shown in red/yellow) and
non-local agreement (shown in purple/green). Figure from Finlayson et al.
(2021: 1835).

�e causal mediation analysis indicates that Transformer agreement computation
is modulated by interfering a�ractors. We explore this in section 4.2.
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4.2 Grammatical Error Detection (GED) Probing

I analyse the results of the GED probing experiment conducted by Davis, Bryant,
Caines, Rei & Bu�ery (2022), who shared (see Appendix) their per-layer probing
results across the agreement a�raction conditions for �ve Transformer-based LMs:
BERT, RoBERTa, ELECTRA, GPT-2 and XLNet. GED is a probing technique that
measures the extent that Transformer-based LMs can detect ungrammatical tokens.

Contextual embeddings are extracted for every token in a sentence. All mod-
els have 12 layers. �e GED probe is a token-labelling probe trained per-layer to
classify the token-level embedding as grammatical or ungrammatical. �is di�ers
from previous TSE methods in two crucial respects. It does not assume errors are
located on certain tokens in a sentence, allowing us to assess where the probe
believes a grammatical error is located in a sentence. Error detection is assessed
using contextualised embeddings, instead of targeting [MASK] tokens in BERT or
RoBERTa or using minimal pair sentence-level datasets. High probing performance
is indicative that the pre-trained model has encoded the relevant features in the
contextual representations of VERB, which implicitly includes the subtasks of clas-
sifying contextual embeddings as verbs and subject NPs and learning the [SG] and
[PL] number features.

�e GED probe shows that the emergent subject-verb agreement generalisations
are greatly perturbed by Agreement A�raction e�ects between the verb and its
target subject.

4.2.1 Methodology

�e GED probe is trained on a subset of the L2 English learner W&I-FCE dataset,
comprised of Write & Improve + LOCNESS (W&I) corpus (Bryant, Felice, Andersen
& Briscoe 2019) and the First Certi�cate in English corpus (FCE) (Yannakoudakis,
Briscoe & Medlock 2011). Using the ERRANT annotation framework – a standard-
ised grammatical error annotation toolkit that extracts edits from learner errors
and corrections (Bryant, Felice & Briscoe 2017), Davis et al. restrict training data
to corrected subject-verb agreement errors (tagged R:VERB:SVA in the ERRANT
framework) in the W&I-FCE dataset, leaving 1936 sentences for training and 142
sentences for validation.

Probes are evaluated using a technique called targeted syntactic evaluation (TSE).
TSE methods, like CLAMS (Mueller, Nicolai, Petrou-Zeniou, Talmina & Linzen 2020)
and BLIMP (Warstadt, Parrish, Liu, Mohananey, Peng, Wang & Bowman 2020),
evaluate LMs on minimal pairs of grammatical and ungrammatical sentences to
evaluate whether LMs can detect speci�c grammatical contrasts. In this case, the
TSE stimuli for agreement, developed by Marvin & Linzen (2018), measure the
relative probability of the matrix verb (the critical region of subject-verb agreement)
agreeing with the grammatical number of NPsubject across agreement a�ractor
conditions with intervening subject/object relative RCs, PPs or in coordination. �e
full set of stimuli is described in Table 2 below.
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Structure Description Example

Simple Agreement John laughs/*laughs

In a sentential complement John knows the dog play/*plays

Across a PP �e vase in the gallery breaks/*break

Across a subject RC �e cat that chases the mouse runs/*run

In a short VP coordination John smiles and laughs/*laugh

Across an object RC �e mouse that the cats chase runs/*run

Within an object RC �e cat that the mouse eats/*eat

Across an object RC (null complementiser) �e mouse the cats chase runs/*run

Within an object RC (null complementiser) �e cat the mouse eats/*eat

Table 2 Table of Agreement A�raction Minimal Pair Probing Stimuli (Marvin & Linzen
2018).

Davis et al. (2022: 364) compare probes to a VERB-ONLY baseline which incor-
rectly tags all verbs as ungrammatical, with an average baseline score of 0.43. F1
scores on the Marvin & Linzen (2018) stimuli are reported, which equally measures
the Transformer-based LM’s precision in classifying token-level embeddings (cor-
rectly/incorrectly as false positives) as ungrammatical and its ability to correctly
recall the token-level embeddings that were classi�ed in the W&I-FCE dataset as
ungrammatical (measuring false negatives).

4.2.2 Results

As illustrated in Figure 14, ELECTRA (orange) achieves a near-perfect F1 score
across all agreement a�ractor conditions. GPT-2 (green) is below baseline on all
metrics. BERT-probes perform well for most constructions (although performance
is slightly lower in object RCs), especially in layer 12, suggesting that the token
representation from BERT models already encodes a lot of information related to
SVA before any further �ne-tuning. BERT’s encoded syntactic information about
POS tagging is known to be ‘catastrophically’ forgo�en during �netuning, while
syntactic information related to dependency and constituency parsing is improved.
We discuss this further in section 5.2.

F1 scores for RoBERTa (red) drop for sentences with subject-relative clauses,
prepositional phrases, and object-relative clauses (agreement within the clause). Per-
formance is much worse in sentential complements, subject relatives, and short/long
VP-coordination. In XLNet (purple/brown), F1 scores are around baseline for PP
and basic subject-verb agreement; much worse for intervening RC (within RC, and
with no complementiser); and higher than the baseline for across RCs (with/without
complementiser). Sentences with a�ractors in these models compromise meaning
independence when processing the agreement relation.
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Figure 14 Results of the Grammatical Error Detection Probe (Davis et al. 2022), trained on
the W&I-FCE dataset, on the agreement a�raction targeted syntactic evaluation
conditions (Marvin & Linzen 2018). Data courtesy of Chris Davis and Andrew
Caines.

Psycholinguistic evidence suggests that agreement a�ractors modulate agreement
computation for only 13% of complex NPs (Acuña-Fariña 2012: i.a.). Marvin &
Linzen (2018: 1197-1198) conduct an acceptability judgement test on Amazon Me-
chanical Turk, giving human-participants minimal pairs of the agreement a�ractor
set which only dropped to 82− 88% accuracy in non-local agreement (e.g. across
RCs and PPs). �ese low-probability Agreement A�raction e�ects have been argued
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to be the product of erroneous grammatical computation in agreement systems
(Franck, Sadri Mirdamadi & Kahnemuyipour 2020, Bhatia & Dillon 2022).

While it was not possible to directly compare the F1 scores of the model with
available human baselines, structural generalisations in RoBERTa and XLNet are
modulated to a far greater extent by agreement a�raction e�ects, particularly in
relative clause and coordinative environments. �is reduced performance in long-
distance contexts di�ers from human grammatical competence

4.2.3 Analysis: Limited Structural Generalisation

I highlight four factors that potentially modulate the sensitivity of Transformer-
based LMs to agreement-a�raction e�ects:

i. Frequency: While BERT can generalise well to SVA pairs that never occur in
training (which indicates a degree of rule-governed behaviour), verb frequency
and the frequency of alternative in�ections in training data are causally
implicated in the predictions BERT makes at inference time– these strong
training priors make it harder for BERT to estimate the grammatical number
of infrequent lexical items (Wei, Garre�e, Linzen & Pavlick 2021).

ii. Spurious Correlations: Transformer models exploit increasingly smaller spuri-
ous statistical correlations in the dataset– and common strategies like bal-
ancing datasets may be bound to ‘throw the baby out with the bathwater’
(Schwartz & Stanovsky 2022). Transformers lack relevant domain-general
knowledge to distinguish these spurious correlations from genuine causation
(Eisenstein 2022).

iii. E�ect of Long Distance: Transformers exhibit a bri�le performance in long-
range embedded dependencies (Lakretz, Desbordes, Hupkes & Dehaene 2022).

iv. �e compositional generalisation abilities of Transformers are highly sensitive
to the characteristics of the training data. Making simple changes to training
data distribution (e.g. adding more varied primitives in the data) allows
Transformers to generalise compositionally (Patel, Bha�amishra, Blunsom &
Goyal 2022).

4.2.4 Bene�ts of MLM

�e GED probing results show that autoregressive LMs, like GPT-2 and XLNet,
perform only on-par with the VERB-only baseline and do not encode robust in-
formation for SVA error detection. �e overall F1 scores for autoregressive LMs
(GPT-2, XLNet), MLM models (BERT, RoBERTA) and ELECTRA across all agree-
ment a�ractors are shown in Figure 15. �e MLM pre-training objective in BERT
and RoBERTa encodes inductive biases that are relevant to the detection of SVA
errors, compared to the autoregressive language modelling objective in GPT-2 and
XLNet. Both BERT and ELECTRA encode information related to SVA errors in
the middle-to-late layers, while ROBERTA seems to encode information earlier in
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the model, while ELECTRA’s Replaced Token Detection Objective is more aligned
with GED, which potentially explains its greater sensitivity to encode syntactically
discriminative information.

Figure 15 Masked Language Models and ELECTRA perform far be�er than autoregressive
LMs. Figure based on data shared by Andrew Caines and Chris Davis.

MLM objectives are biased towards extracting both statistical and syntactic depen-
dencies using random masks. While uniform [MASK] lacks task-speci�c supervision,
the MLM objective can recover latent variables. �e ability for MLM log-probabilities
to recover dependencies between these variables implicitly supports emergent syn-
tax: Transformers with an MLM pre-training objective can outperform classical
unsupervised parsing methods when a minimum spanning tree is formed on the
implied statistical dependencies produced by the a�ention mechanism (Zhang &
Hashimoto 2021).

Empirical evidence of the fragile computation of agreement demonstrates the
poor domain-general structural generalisation capabilities of Transformer-based
Language Models. Once a human learner postulates (uninterpretable) φ-features,
[uφ] (triggered by ‘departures of Saussurean arbitrariness’) the learner restricts
the domain of [uφ] on syntactic heads– initially extending it to all syntactic heads
in the target domain before successively restricting the target domain based on
further input. �ese acquisitional dynamics yield the Parameter Hierarchy for Bantu
agreement in (2) (van der Wal 2022: 242) – we return to Parameter Hierarchies in
section 5.3.
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(3) Emergent Parameter Hierarchy for agreement in Bantu languages. �e NO
> ALL > SOME contextual restriction of (uninterpretable) φ-features, uφ, on
speci�ed syntactic e�ects leads to robust agreement computation. Feature un-
interpretability is assumed to trigger agreement computation in the Minimalist
Program (Chomsky 2000), but is not relevant for our purposes. Figure from
van der Wal (2022: 242).

a. Is uφ present?

N Y: is uφ present on all heads?

Y N: Is uφ present on all argument-licensing heads?

Y
Ciluba, Rwanda

N: Is uφ present on all v&T?

Y
Makhuwa, Bembe

N: Is uφ present on va?

Y
Kinyakyusa

N
Basaa

b. Is uφ present on C?

N
Rwanda, Bembe

Y
Ciluba, Makhuwa

In MMM terms, the absence of the ability to perform NO> ALL> SOME learning
dynamics means that Transformers are unable to replicate the contextual-restriction
of [uφ] to its target domain, leading to an overgeneration of agreement a�raction
e�ects modulated by an over-sensitivity to spurious correlations. Emergent syntax
must be distilled more e�ciently to improve the structural generalisation capabilities
of Transformer-based LMs. In section 5, I propose techniques that can do so with
reductions in corpus size for pre-training and bene�ts in low-resource se�ings.
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5 Discussion: MMM as a heuristic for Language Modelling

5.1 Top-Down Goals in Language Modelling

Striking a correspondence between the pre-training of Transformer language models
and the dynamics of grammar construction, according to the predictions of MMM
and DST, allows us to interpret empirical probing results by linking MMM-driven
acquisition pathways to the inductive biases of the neural architecture. Although
there may be confounding variables that impinge on the results of the GED probing
and causal mediation analyses of agreement, they do indicate that Transformer-
based LMs exhibit domain-general inductive biases that are recruited to replicate
properties a�ributed to the acquisitional dynamical system of the human learner,
such as sensitivity to departures from Saussurean arbitrariness and Goldilocks
E�ects.

It is conceptually and theoretically desirable to translate the predictions of MMM
and DST into top-down language modelling goals, which guide the process of LM
along a radical cline of increasing linguistic sensitivity, taking LMs to a position of
having the competence of modelling possible and probable languages. MMM is a
more abstract framework couched in the background assumptions of generative
grammar. �is means that it is not possible to fully replicate the MMM model in
Transformers in the absence of an intensional characterisation of formal features
in contemporary syntactic theory5. Instead, MMM is a heuristic for computational
linguists to discriminate the most salient measures of syntactic complexity; probing
strategies; and typological datasets. As a universal meta-learning strategy that
underpins emergence in natural language, it allows us to identify a constrained set
of pre-training and meta-learning techniques to augment the basic Transformer LM
to approximate the NO > ALL > SOME human emergent structural generalisation
capabilities across languages.

As the technological tools for the injecting syntactic behaviour of MMM and
DST into Transformer-based LMs are in their infancy, I argue MMM can be used
as top-down heuristic to inform seven practical improvements in NLP practice
that should yield be�er syntactic generalisation (section 5.2) in a typologically-
equitable manner (section 5.3). We extend the methodology of Collier, Liu & Shareghi
(2022), which triangulates between philosophical ontology, cognitive psychology
and computational linguistics to develop cognitively-motivated evaluation metrics
to close the gap with normative human performance on symbol grounding (Harnad
1990) and common-sense reasoning. �is top-down approach is adjunct to intrinsic
evaluation metrics, like perplexity. While these need to be reconciled with bo�om-
up model performance-driven considerations, this approach presents a narrow
pathway for future linguistically-motivated LM engineering to allow Transformers
to fully capitalise on their inductive biases for emergent syntax.

5 Ma� Tyler and �eresa Biberauer (p.c.)
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5.2 Improving Structural Generalisation

5.2.1 Measures of Syntactic Complexity: Surprisal, Chomsky Hierarchy and Sensitivity

Sensitivity is computable and theoretically-motivated complexity measure that can
relate the inductive biases of the Transformer to its emergent syntactic properties.
It can tractably estimate the relative complexity of NLP tasks, unlike Kolmogorov
complexity which is well-de�ned and computable only in the asymptotic limit.
Functions with low sensitivity also have a low Kolmogorov-complexity– this is a
metric applied in neo-emergent approaches to compare the ‘depth’ of emergent
parameter hierarchies (Biberauer, Holmberg, Roberts & Sheehan 2014b). I now
argue that sensitivity is a more suitable complexity metric for emergent syntax than
the Chomsky Hierarchy and information-theoretic intrinsic evaluation metrics.

�e Chomsky Hierarchy is a containment hierarchy of formal languages (Chom-
sky 1956), comprised of regular languages that generate le�/right-linear production
rules A → a and A → aB which can traditionally model (morpho)phonological
rules (Chomsky & Halle 1968); context-free languages which can additionally gen-
erate binary-branching phrase-structure rules, A → BC; and ‘mildly’ context-
sensitive languages– which can characterise certain computational processes (Joshi
1985) as summarised in Figure 16. As consistent with early computational mor-
phology modelled using �nite-state transducers (Kaplan & Kay 1994: i.a.), most
morphophonological processes are modelled in the ‘sub-regular’ region (Chandlee,
Eyraud & Heinz 2014, Heinz 2018, Danis & Jardine 2019).

Figure 16 Location of Grammatical Processes on the Chomsky Hierarchy of Formal
Languages. Figure from Rawski & Heinz (2019).
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While the standard linguistic interpretation of the Chomsky Hierarchy in Fig-
ure 16 is consistent with early pre-Aspects Generativism, the class of formal lan-
guages described by a family of parsing techniques called Minimalist Grammars
that are the most faithful to current Chomskyan commitments is exactly the class
described by multiple-context-free grammars (Stabler 2011: 624):

(4)
Context-Free ⊂ TAG ≡ Categorial Grammar (CCG)
⊂ Multiple CFGs ≡ MG ⊂ Context-Sensitive

Investigations of the computational complexity of Transformers, which impose
formal bounds on the expressivity of the Transformer encoder in terms of the
Chomsky Hierarchy, have found that it is (paradoxically) limited in recognising
unbounded hierarchical languages and even certain regular formal languages despite
its improved surface performance. �is is exempli�ed in Table 3.

Formal
Language

Circuit
Complexity Y/N Description Reference

PARITY Non-AC0 N �e language of bit strings
with an odd number of 1s

Hahn
(2020)

2Dyck Non-AC0 N
�e language of ‘correctly
bracketed words’ consisting
of two types of brackets
( ‘(’,‘)’ and ‘[’,‘]’ ).

Hahn
(2020)

Dyck-1
Majority

AC0

Boolean Circuits

of Constant Depth

(Y)
by self-a�ention

variant generalised

unique hard attention

DYCK-1 = {‘(’,‘)’}
MAJORITY = set of
strings with at least
as many 1s and 0s

Merril et al
(2022)
Hao et al
(2022)

Counter
Languages N/A Y

Non-Deterministic FSA
with additional memory
to hold a non-negative
integer that can be
incremented/decremented

Bha�amishra
et al (2022)

Dyckk,D N/A Y
Subset of Dyck k
depth bounded by D
�is is argued to capture the (�nite) bounded

hierarchichal structure of natural language

Yao et al
(2021)

Boundary: �e upper bound for �xed-precision Transformer Encoders is
�rst-order logic with counting quali�ers foc[+;MOD] Chiang et al (2023)

Table 3 Transformers can recognise the proper subset of regular and subset of deter-
ministic context-free languages (counter automata). �e upper-bound of the
expressivity of Transformer encoders with �xed-precision can be modelled by
characterising strings using logical formulae (Chiang et al. 2023).
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�ere are four reasons why sensitivity should be a preferred metric of emergent
syntax over the Chomsky Hierarchy:

i. �e formal languages used to bound the complexity of the self-a�ention
mechanism are more naturally suited to recurrent architectures– as �nite-
state automata are formal abstractions of RNNs (Bha�amishra et al. 2022: 11).
�is view of computational complexity does not isolate the inductive biases
of Transformers that are recruited in language-speci�c tasks.

ii. While the Chomsky Hierarchy has been cited to be a useful formalism to
characterise locality in Generative Linguistics (Avcu & Rhodes 2022), it may
be too empirically restrictive (Chaves & Putnam 2022).

iii. �e Chomsky Hierarchy does not measure the di�culty for a Transformer to
achieve high accuracy on tasks given a realistic distribution of output– as it
is not de�ned for individual inputs (Hahn et al. 2021b: 891).

iv. �ere is evidence to suggest that ‘shallow’ Transformers can learn ‘shortcuts’
to a wide variety of automata structures during pre-training (Liu, Ash, Goel,
Krishnamurthy & Zhang 2022).

�is ‘shortcut behaviour’ of Transformers in learning formal languages is expected
under the Sensitivity Conjecture as a ‘minimal means’ used by the Self-A�ention
mechanism to pay a�ention to salient aspects of the input. Bha�amishra et al.
(2022: 21-22) establishes that sensitivity is a capacity measure that derives bounds
on the structural generalisation capabilities of Transformers. Transformer-based
LMs are more likely to over�t and achieve poorer generalisation performance in
higher-sensitivity functions. Conversely, functions with lower sensitivity can be
learnt with be�er sample e�ciency. Sensitivity is a capacity bound for the upper
bound structural generalisation in Transformers: high sensitivity functions have
high entropy, but the converse is not necessarily true (Bha�amishra et al. 2022: 21-
22). �e Sensitivity Conjecture characterises the fundamental pa�erns of emergence
that underpin the poor structural generalisation of Transformer-based LMs.

�e standard approach for interpreting syntactic emergence relies on the information-
theoretic notion of surprisal. Surprisal is closely related to intrinsic evaluation metric
perplexity, which determines the number of guesses an LM takes to correctly predict
the target word wi:

(5)
N∏
i=0

P (wi|w≤i)
−1
N

Surprisal is the negative log-probability −log[P (wi|w1, . . . , wi−1)] of input,
w1, ..., wn. �e central claim of this Surprisal �eory (Levy 2018, Futrell & Levy
2017, Futrell, Wilcox, Morita, Qian, Ballesteros & Levy 2019, Wilcox, Levy, Morita
& Futrell 2018, �rush, Wilcox & Levy 2020: i.a.) of emergent syntax is that the
human-likeness of model predictions can be a�ributed to surprisal di�erences of
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Figure 17 Structural Generalisation is partially dissociated from Perplexity. Figure from
Hu et al. (2020).

minimal pairs of syntactic constructions. Yet, there are three limitations of Surprisal
�eory.

First, Syntactic Generalisation performance can be dissociated from standard
information-theoretic metrics of LMs, like perplexity (the inverse of surprisal).
Substantial di�erences in generalisation depend on pre-training objectives of the
Transformer-based model (Hu, Gauthier, Qian, Wilcox & Levy 2020), which cannot
be modelled using surprisal. Additionally, Surprisal �eory does not assess the
empirical e�ectiveness of di�erent entropy estimators for syntactic distributions:
Arora, Meister & Co�erell (2022) indicate that the use of poor entropy estimators
can lead to an over-estimation of e�ect sizes in information-theoretic studies.

Moreover, Surprisal is not su�cient to account for a�ested contiguity e�ects
in Language. While Hahn, Degen & Futrell (2021a) suggest information locality
is a surprisal-derived functional constraint that drives systems towards harmonic
OV-VO word order, the MMM dynamics in human acquisition yield more abstract
contiguity e�ects which cannot be characterised in terms of optimal coding from an
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information-theoretic perspective. �e Final-over-Final Condition (FOFC) (Biberauer,
Holmberg & Roberts 2014a, Sheehan, Biberauer, Roberts & Holmberg 2017) is
typological contiguity restriction which requires structurally adjacent syntactic
heads to bear a diacritic∧ to prohibit the derivation of typologically una�ested word
orders like ∗VOAux (see Figure 18). Contiguity is realised as a re�ex of MMM to
create contiguous syntactic domains that share a formal feature with no intervening
‘on/o�’ pa�erns.

Figure 18 �e Final-over-Final-Condition (Biberauer et al. 2014a, Sheehan et al. 2017)
is an abstract contiguity restriction that rules out typologically-una�ested
*�nal-over-initial word disharmonic orders. FOFC cannot be accounted for by
surprisal.

Typologically Una�ested Word Order FOFC-Incompliant Structure

*VOAux *[AuxP [V P V DP] Aux]
*VOC *[CP [TP T VP] C] or * [CP [TP [V P V O] T] C]
*C-TP-V *[V P [V P C TP] V]
*Det/N PP P *[PP [NP/DP / D/N PP] P]
*Num-NP-Dem *[DemP [NumP Num NP]DEM]
*Pol-TP-C *[CP [PolP Pol TP]C]

Table 4 Examples of FOFC Violations.

Finally, Wilcox, Futrell & Levy (2022: 35-37) claim that emergent syntax is driven
by ‘data-likelihood’, as there is no ‘obviously strong natural language syntax-
oriented inductive bias’ in the Transformer. Dependencies between token sequences
are argued to underpin Transformer’s emergent capabilities to learn locality con-
straints because of a high data-likelihood to shi� probability mass towards the target
distribution in the training data. �is account of emergent syntax is unrestrictive
and unpredictive: it does not explain how Transformers recruit their inductive bi-
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ases to formulate generalisations given the poverty-of-stimulus in the training data.
Surprisal �eory does not account for which facets of the input the Transformer
a�ends to, nor the order in which the emergence of syntactic information follows.
�e Sensitivity Conjecture is a more fundamental measure of syntactic emergence
than Surprisal – which can only mirror functional information locality e�ects in
processing that is partially dissociated from structural generalisation, rather than
elucidating deeper learnability parallels with linguistic competence.

5.2.2 Probing Techniques for Emergent Syntax

�e e�ectiveness of probing for emergent syntax has, recently, been disputed. While
probing can clarify the opacity of Transformer representations, Maudslay, Valvoda,
Pimentel, Williams & Co�erell (2020) argue that there should be no inherent di�er-
ence between probe design and the model designed for the task in computational
linguistics– a�er �nding that a simple parser with a lightweight parameterisation
was able to identify more syntax in BERT than the Structural Probe (Hewi� & Man-
ning 2019). Classical probes may memorise information from the dataset without
evaluating representations in the Transformer (Belinkov 2022).

Immer, Torroba Hennigen, Fortuin & Co�erell (2022) present a Bayesian frame-
work to ensure that probes quantify the inductive bias towards linguistic di�erences
between embeddings by selecting probes that are the right complexity. Spectral
Probing (Müller-Eberstein et al. 2022b) allows us to gain insights into how Trans-
formers recruit their inductive biases according to emergent curricula, enabling
quantitative comparisons between the linguistic intuitions underlying tasks. How-
ever, this approach is limited to high-resource languages, where datasets for all
tasks are available.

Viewing Transformers as dynamical systems allows us to relate the creative prob-
ing strategy, Grammatical Error Detection, and Causal Mediation Analysis used in
section 4 directly to the inductive biases of the Transformer. GED extracts linguistic
information from the Transformer by harnessing ungrammaticality detection as a
window into the linguistic competence of the model. GED does not learn additional
parameters as measures the e�ect of perturbations to the input sentence and it is
compared to a random baseline. Causal Mediation Analysis was introduced as an
alternative to classical probing strategies (Vig et al. 2020): performing interventions
to the input sentences to measure the changes to a set of continuations elucidates
how model size does not a�ect signi�cantly increase syntactic performance that
directly implicates model causation (not correlation) and does not introduce addi-
tional confounds in a paradigm that is reminiscent of minimal pair acceptability
tests used in psycholinguistics.

Future extensions of Causal Mediation and GED, which has a close relationship
to human grammaticality judgements, can potentially harness Sensitivity as a
complexity measure to develop strategies that directly quantify how the MMM-
reminiscent inductive biases underpin emergent syntax.
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Figure 19 �e Sprouting of the Syntactic Category System (Bosch 2023).

5.2.3 Replicating Category Sprouting: Augmenting Complexity-Driven Curricula

Transformer-based LMs need to improve the robustness of emergent category induc-
tion to improve syntactic generalisation to avoid erroneous in�uence by agreement
a�ractors.

A recent neo-emergent alternative of maturation in grammar construction called
‘Sprouting’ proposes that the representational syntactic category system (SCS) is
comprised of a universal developmental shi� from an initial state with a uni�ed
category C that successively divides into nominal and verbal extended projections,
CEP = {Cnominal,Cverbal}, then ‘phasal’ heads CPhasal = {C, v, ...} – which are
involved in cyclic symbolic-computation (Chomsky 2001) –, the ‘core functional
categories’ (CFCs) and �nally more �ne-grained projections based on the input
(Bosch 2023). �is neo-emergent SCS is typologically-motivated by generative work
on Cartography (Rizzi & Haegeman 1997: i.a.) and on the relative order of the
emergence of syntactic categories in children (Friedmann, Belle�i & Rizzi 2021: i.a.).

Sprouting categories abide by the successive division behaviour of MMM, as
there is an assumed structural homology between the SCS and the acquisitional
dynamical system. Under a top-down approach, Sprouting o�ers a natural solution
to the empirical and theoretical issues raised in section 4.2 if we can view a discrete
subset of the real vector space of the Transformer encoder states as isomorphic to a
combinatorial space of discrete symbol structures.

Transformer-based LMs have not achieved state-of-the-art performance in POS
tagging tasks– models do not preserve POS information which can be distilled
from surrounding context (Pérez-Mayos, Ballesteros & Wanner 2021a, Pérez-Mayos,
Carlini, Ballesteros & Wanner 2021b) and recent state-of-the-art performance is made
by a Gaussian Hidden-Markov-Model (Zhou, Li, Li & Zhang 2022). More recently,
Syntax-informed Transformer-based LMs (in Table 5) o�en rely on additional syntax-
guided a�ention components to enhance the transformer– using syntax-aware
a�ention that restricts self-a�ention to syntactically-relevant ‘local’ regions.

�ese methods require more parameters and additional syntactic parsing in down-
stream tasks, which severely limits the application of syntax-enhanced language
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Name Technique

SpanBERT
(Joshi et al 2020)

Extends BERT by making contiguous random spans,
rather than random tokens, and training the plan
boundary representationsto predict the entire content
of the masked span, without relying on the
individual token representations within it.

Structural Sca�olding
(�ian et al 2021)

Augment Transformer with ‘Generative Parsing’
that jointly models the incremental parse and word
sequence as a part of the same sequence modeling
task and a ‘Structural Sca�old’ that guides the
language model’s representation via additional
structure loss that separately predicts the
incremental constituency parse

Syntax-BERT
(Bai et al 2021)

Generates sub-networks based on sparse masks
re�ecting di�erent relationships and distances
of tokens in a syntax tree, with a topical a�ention
layer to aggregate task-oriented representations
from di�erent sub-networks

Syntax-Aware Local A�ention
(Li et al 2020)

A�ention scopes are restrained based on
the distances in the syntactic structure

Transformer Grammars
(Sartran et al 2022)

Syntax LMs jointly model probability of phrase
structure trees and strings of words using a
STACK/COMPOSE a�ention mechanism

Table 5 Summary of recent Syntax-informed Transformer LMs.

models in a wide range of ‘downstream’ NLP tasks. Instead, the unsupervised
distillation of syntactic information is possible if models are prompted to partition
syntactic and contextual information (Bailly & Gábor 2020). For instance, it is pos-
sible to distil syntactic information by learning a function f : Rn → Rm, which
operates on contextualised word representations x and extracts vectors, f(x), that
make the structural information encoded in x more salient and discarding as much
lexical information as possible (Ravfogel, Elazar, Goldberger & Goldberg 2020).
�e function is learnt by sampling sentences from a LM and replacing content
words to obtain ‘structurally-equivalent’ sentences and then learning a mapping
from contextualised embeddings to the words using a technique called Triplet Loss
which pushes the representations of pairs from the same group closer together.
Zhang, Lijie, Xiao & Wu (2022) inject syntactic structure into Transformers using a
phrase-guided contrastive objective that maximises a�ention distributions between
words in the same phrase, contrastively inducing dependency tree representations
from a�ention distributions.

Moreover, Huebner, Sulem, Cynthia & Roth (2021) trains a scaled-down version
RoBERTa on a 5 million word corpus of child data to simulate the PLD available to the
child. Dubbed BabyBERTa, it receives 50 million tokens of input using a dynamic
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masking strategy, equivalent to the linguistic experience of a 6;0 child. When
evaluated on a syntactic test suite (see Figure 20), BabyBERTa reaches comparable
accuracy to RoBERTa despite having 15X fewer model parameters. Encapsulating
the complexity-driven curricula sprouting dynamic, pre-training Transformers using
small-scale PLD is a technique that can be extended to enable resource-e�cient
structural generalisation in a typologically-consistent manner.

Figure 20 BabyBERTa, trained on age-ordered child corpora like CHILDES, achieves
comparable accuracy to RoBERTa on a minimal pairs TSE dataset inspired by
BLIMP (Warstadt et al. 2020). Figure from Huebner et al. (2021: 629).

While the precise nature of the ‘mapping’ between symbolic computation and
the self-a�ention mechanism is unclear from a top-down perspective, these two
families of techniques that from a ‘bo�om-up’ perspective are potentially relevant.
Guided by MMM-considerations, I hope to augment Huebner-style pre-training with
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some unsupervised syntactic distillation mechanism to support robust syntactic
generalisation would allow the model to exhibit ‘Sprouting’ emergent syntactic
categories according to a universal syntactic category system. �is approximates the
hypothesis of DST that ‘macrolevel’ symbolic representation is composed at a ‘mi-
crolevel’ of continuously variable levels at activity in the self-a�ention mechanism.
�ere are still extant theoretical issues posed by MMM, like how to replicate formal
contiguity restrictions or the naturalistic learning scenario assumed in MMM using
Generative Spoken Language Modelling (Lakhotia, Kharitonov, Hsu, Adi, Polyak,
Bolte, Nguyen, Copet, Baevski, Mohamed & Dupoux 2021) to mirror Saussurean
sound-meaning mappings. Top-down language modelling clearly opens a number
of productive avenues for improving the syntactic-capabilities of Transformers.

5.3 Improving Typological Performance

5.3.1 Against Syntactic Transfer

State-of-the-art techniques used for Transfer Learning, typically evaluated on NLU
tasks, do not operate robustly in cross-lingual syntactic transfer– motivating a
partition between syntactic and semantic typology in LMs. While our empirical
analysis of structural generalisation only focussed on English due to limited eval-
uation resources, we can apply the typological proposals of the MMM models to
multilingual language modelling. I o�er a linguistically-motivated analysis of the
‘curse of multilinguality’ problem (Pfei�er 2023) in cross-lingual syntactic transfer,
where per-language performance drops as models cover more languages.

While mBERT has been very successful for transfer learning when assessed on
downstream Natural Language Understanding tasks (Conneau, Wu, Li, Ze�lemoyer
& Stoyanov 2020), there are two reasons that suggest cross-lingual syntactic transfer
is not as e�ective. Guarasci, Silvestri, De Pietro, Fujita & Esposito (2022) apply
the structural probe to analyse syntactic transfer between consistent-null-subject
language (CNSL) Italian and non-null-subject (NSL) English and French, suggesting
that the probe could reconstruct the dependency parse trees of the Italian sentences
without the subject when trained in English/French. However, the observed poor
performance of transfer between non-genetically related Italian-English/
English-Italian dyads is also indicative of the failure of robust transfer between
non-NSL and CNSL languages. �e structural probe faces empirical limitations for
measuring syntactic transfer, as mBERT’s representations are known not to encode
subjecthood purely syntactically– it is modulated by continuous and dependent
on semantic and discourse factors (Papadimitriou, Chi, Futrell & Mahowald 2021)
which Guarasci et al. do not control for.

Secondly, typological variation falls out of the early sensitivity to initial con-
ditions which creates a language-speci�c curriculum of successive NO > ALL >
SOME learning dynamics in the MMM-model. �is cannot be transferred. �e poor
transfer observed in Guarasci is consistent with a neo-emergent characterisation
of null-subject typology, where learners follow a NO (non-NSL) > ALL > SOME
(CNSL) parametric pathway (Biberauer 2018). Cross-lingual syntactic transfer of

92



Salhan

typological features from a shared ‘universal’ pool is only possible under the Pa-
rameter Hierarchies of Roberts (2019), which assumes a one-time selection of FFs as
assumed by Chomsky (2000). However, this is not consistent with the Sensitivity
Conjecture and the inductive biases of the Transformer supporting emergent syntax.
Robert’s account is also computationally-implementable due to the absence of an in-
tensional characterisation of what this universal set of FFs includes. Neo-emergence
o�ers an upper bound on the ‘shallowness’ of transfer-based approaches, which we
formulate in (6) below:

(6) Shallow Syntactic Transfer Hypothesis (SSTH): Full Syntactic Transfer re-
quires a universal ‘one-time selection’ of FFs, which is (a) not computable and

(b) is not possible under the a�ested MMM-based pre-training dynamic. Full

Syntactic Transfer is, therefore, not possible in Transformer-based LMs.

5.3.2 Meta-Learning, Modularity and Typological Datasets

SSTH motivates a re-appraisal of existing techniques– which are not following the
‘right hills’ (Bender & Koller 2020) for syntactic transfer. State-of-the-Art techniques
like meta-learning and modular pre-training can potentially be repurposed to enable
the fast adaptation of Transformers to a low-resource se�ing to replicate robust
very-early Parameter Se�ing of word order. However, once the ‘emergent engine’ of
the Transformer has kicked-o�, contextual restrictions and subsequent Parametric
variation will be unable to be transferred.

State-of-the-art techniques like (1) ‘modular’ adapters, which adapt multilingual
LMs towards the properties of target languages to avoid ‘catastrophic forge�ing’
of emergent knowledge (Ansell, Ponti, Korhonen & Vulić 2022); (2) clustering lan-
guages during Transfer (Maurya & Desarkar 2022, Choenni & Shutova 2022); and
(3) dynamic language-speci�c subnetworks that split o� from the multilingual LM
to transfer features between typologically-related languages (Xu, Gui, Ma, Zhang,
Ye, Zhang & Huang 2022) are unable to robustly participate in syntactic transfer.
�is is because they all assume, contra the SSTH, that cross-lingual transfer of
syntax can happen during pretraining. �e SSTH does not impinge on the empir-
ical success of these techniques semantic transfer– instead, it highlights a strict
partition between how computational linguists between NLU tasks and structural
generalisation, which is expected from a neo-emergent DST perspective where
symbolic computation is dissociated from the acquisitional dynamical system and
intermediate Conceptual Spaces.

�is assessment is supported by Blevins, Gonen & Ze�lemoyer (2022) who �nd
that the points of pre-training when models learn to transfer vary cross-linguistically
across language pairs and that the layer of multilingual-Transformers exhibit long-
term performance degradation as linguistic knowledge propagates to lower layers.
Transfer also leads to typologically-intuitive results: Winata, Wu, Kulkarni, Solorio
& Preotiuc-Pietro (2022) �nd that mixture of random source languages is more
e�ective than transferring to unseen typologically-similar languages
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A meta-learning algorithm called Model-Agnostic Meta-learning (MAML) (Finn,
Abbeel & Levine 2017) extracts knowledge from observed tasks to enable a Trans-
former to adapt to a new data-limited meta-testing task by maximising the ‘respon-
siveness’ of loss functions to the new task. While this has been widely-applied in
Transfer Learning to learn low-resource languages in a sample-e�cient manner,
Ponti, Aralika�e, Shrivastava, Reddy & Søgaard (2021) establishes that MAML is ill-
suited for cross-lingual NLP as it makes an independent and identically distributed
assumption that assumes that evaluation languages share an identical distribution
to the source languages. MAML Transfer relies on the evaluation languages being
identically distributed. �is assumption is incongruous with cross-lingual transfer
in realistic scenarios.

Multilingual probing studies typically use coarse-grained datasets, like WALS
for probing emergent syntax (Stanczak, Ponti, Torroba Hennigen, Co�erell & Au-
genstein 2022) and coarse-grained part-of-speech inventories, like UPOS. However,
WALS is not clearly related to the pa�erns of emergence underpinning typological
pa�erns. MMM highlights the bene�ts of evaluating emergent syntax in Transform-
ers along di�erent levels of granularity. �is motivates the creation of neo-emergent
typological datasets. Generative linguists have developed a method called the Para-

metric Comparison Method (PCM) which has developed typological datasets in terms
of Generative syntactic parameters for diachronic purposes (Marcolli 2016, Ceolin,
Guardiano, Irimia & Longobardi 2020). �e increased linguistic granularity of PCM-
style datasets could be potentially relevant for developing resources for evaluating
the typological-uniformity of structural generalisation in Transformers.

�e MMM-perspective suggests that meta-learning techniques can be e�ec-
tively repurposed for be�er syntactic generalisation. Pfei�er, Goyal, Lin, Li, Cross,
Riedel & Artetxe (2022) pre-train the transformer with modular units ‘from the
get-go’, preparing the model to be extended with additional modular units later on.
Langedijk, Dankers, Lippe, Bos, Cardenas Guevara, Yannakoudakis & Shutova (2022)
�nd that integrating MAML with Transformer-based dependency parser, which
projects mBERT embeddings through a graph-based bi-a�ne a�ention classi�er
to produce a probability distribution of arc heads for each word, can signi�cantly
improve the performance of language transfer and standard supervised learning
baselines for a variety of unseen, typologically diverse, and low-resource languages,
in a few-shot learning setup. Ponti et al. (2021) also modify the training objectives
to account for this limitation. MAML has also been repurposed to improve composi-
tionally in Transformers (Conklin et al. 2021: i.a.). �ese are all productive avenues
to improve syntactic generalisation by augmenting Huebner-style pre-training in
monolingual LMs, rather than using multilingual LMs for cross-lingual syntactic
transfer.

Leveraging the typological predictions of MMM formulates a theoretically-precise
typological upper-bound on current techniques and motivates a partition between
cross-lingual syntax and semantics. �is top-down approach makes concrete practi-
cal recommendations about typological datasets and repurposing existing techniques
more e�ectively.
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Future Directions: Multimodal Language Modelling

Salhan, Liu & Collier (2022/in preparation) �nd that image-text LM CLIP (Radford
et al. 2021) performs signi�cantly worse in ‘grounding’ (associating a text-only
embedding with a non-textual conceptual representation) predicate elements than
nominal elements (see Figure 21) and that performance on semantic evaluation
datasets is be�er using non-English monolingual LMs, like CLIP-Italian (Bianchi,
A�anasio, Pisoni, Terragni, Sarti & Lakshmi 2021) than multilingual CLIP. Model
performance was not improved by changing the grounding strategy, such as using
a video-text model Video-CLIP (Xu, Ghosh, Huang, Okhonko, Aghajanyan, Metze,
Ze�lemoyer & Feichtenhofer 2021).

Figure 21 Dissociation of Grounding Nouns and Verbs can be alleviated using by imple-
menting a Sprouting Strategy. Figure from Salhan et al. (2022/in preparation).
See Appendix for datasets and code from this experiment.

�e key issue for multimodal LMs seems to be category distillation. Cross-Modal
A�ention learns the visual grounding of NPs into objects and higher semantic
information about spatial relations (Ilinykh & Dobnik 2022). Still, these results
indicate that multimodal models struggle with a�ending to and grounding verbal
elements. Improving the robust structural generalisation using a Sprouting-inspired
pre-training strategy as outlined above can potentially facilitate the development of
grounding strategies for event semantics.

6 Conclusions and Further Directions

Pace Vaswani et al. (2017), ‘A�ention is not All You Need’ to approximate human
emergent syntactic capabilities resource-e�ciently across languages. Computational
Linguistics has a rich intellectual history that has weaved together rationalism and
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empiricism and oscillated between symbolic and statistical paradigms throughout
the last sixty years (Church 2011, Church & Liberman 2021). While contemporary
symbolic approaches in Chomskyan Generativism and connectionist approaches in
computational linguistics seem mutually incompatible, neo-emergentist MMM and
DST provide computational and theoretical linguists with an ‘in-way’ to reconcile
di�ering background assumptions.

Linguistic �eory provides an abstract characterisation of the invariant and
language-speci�c substance of grammars that arise through the dynamics of emer-
gence. �e Sensitivity Conjecture (section 2.3) highlights an implicit convergence
in the inductive biases that Transformers and human learners recruit to support
emergent syntax. However, the probing study in section 4.2 highlights a funda-
mental limitation in the structural generalisation of Transformers. �is theoretical
perspective advocates a return to the ‘early days of Turing, Minsky, Simon and
McCarthy’ (Chomsky 2022: 364), where computational and theoretical linguistics
symbiotically in�uenced each other.

Understanding how emergence, meta-learning, inductive biases and symbolic
supervision are conceived in linguistic theory and are implemented in computational
linguistics raises theoretical questions about how symbolic computation can emerge
through connectionist neural-architectures. �e insight that Transformers simulate
the e�ects of cognitive dynamical systems is a valuable source of external evidence
for Dynamical Systems �eory.

Conversely, MMM guides language modelling down a syntactically-motivated
cline. It isolates a narrow-set of predictions and practical recommendations: (1)
complexity-driven curriculum learning with the syntactic distillation of embeddings;
(2) the SSTH places an upper-bound syntactically-naive cross-lingual transfer; (3)
repurposing meta-learning algorithms for fast adaption in low-resource se�ings. I
hope to practically-implement these recommendations to improve the structural
generalisation of Transformers.

�e potential of ‘Maximising Minimal Means’ in Transformer Language Mod-
els will lead to be�er-performing language models– in an era where ‘fair NLP’
is of increasing social importance– and can contribute to a reappraisal of how
the relationship between connectionism and symbolic representation is viewed in
computational and theoretical linguistic inquiry.
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Appendix: Statement on Data Availability

All Transformer-based LMs referenced in this dissertation are available open-
source from https://huggingface.co/models. All the code and datasets used
in this dissertation are available in this GitHub repository: https://github.com/
suchirsalhan/Part-IIB-Dissertation.

�e repository contains the following:

i. GED Probing Dataset Sample: �is contains a sample of the Grammatical Error
Detection probing results for Layer 12 of BERT. All probing experiments cited
were run in the Computer Lab in research supported by Cambridge University
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Press & Assessment. �e per-layer probing results were personally shared
by Chris Davis and Andrew Caines for further analysis in this dissertation.
Figures produced were based on F1-macro scores as reported in the data
sample. �e dataset shared contains a similar set of evaluation scores for all
�ve models for each layer.

ii. �e targeted syntactic evaluation dataset developed by Marvin & Linzen is
included in the repository and also includes links to the W&I-FCE corpus and
the ERRANT annotation toolkit (Bryant et al. 2017). Another folder contains
examples of the GED Predictions when evaluated sentences in the dataset
according to di�erent agreement a�raction stimuli.

iii. Relevant code from the Causal Mediation Analysis performed by Finlayson
et al. (2021) It was not replicated as this causal mediation analysis is very
computationally expensive– the authors note that it ‘can take hours on a
GPU. �e outputs also require gigabytes of space for the largest models.’

iv. A selection of the code from Salhan et al. (2022/in preparation) for intrinsic
semantic evaluation of multimodal CLIP is also included.

Suchir Salhan
University of Cambridge
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